988 resultados para NMC batteries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-air batteries are a well-established technology that can offer high energy densities, low cost and environmental responsibility. Despite these favourable characteristics and utilisation of oxygen as the cathode reactant, these devices have been limited to primary applications, due to a number of problems that occur when the cell is recharged, including electrolyte loss and poor efficiency. Overcoming these obstacles is essential to creating a rechargeable metal-air battery that can be utilised for efficiently capturing renewable energy. Despite the first metal-air battery being created over 100 years ago, the emergence of reactive metals such as lithium has reinvigorated interest in this field. However the reactivity of some of these metals has generated a number of different philosophies regarding the electrolyte of the metal-air battery. Whilst much is already known about the anode and cathode processes in aqueous and organic electrolytes, the shortcomings of these electrolytes (i.e. volatility, instability, flammability etc.) have led some of the metal-air battery community to study room temperature ionic liquids (RTILs) as non-volatile, highly stable electrolytes that have the potential to support rechargeable metal-air battery processes. In this perspective, we discuss how some of these initial studies have demonstrated the capabilities of RTILs as metal-air battery electrolytes. We will also show that much of the long-held mechanistic knowledge of the oxygen electrode processes might not be applicable in RTIL based electrolytes, allowing for creative new solutions to the traditional irreversibility of the oxygen reduction reaction. Our understanding of key factors such as the effect of catalyst chemistry and surface structure, proton activity and interfacial reactions is still in its infancy in these novel electrolytes. In this perspective we highlight the key areas that need the attention of electrochemists and battery engineers, in order to progress the understanding of the physical and electrochemical processes in RTILs as electrolytes for the various forms of rechargeable metal-air batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hierarchical porous composites are a potentially attractive material for high-rate cathode. This work presents a facile sol-gel process for the fabrication of a hierarchical porous C/LiFePO4/bio-C composite by using artemia cyst shells as natural biological carbon templates. The C/LiFePO4/bio-C composite exhibits a superior electrochemical performance with discharge capacities of 105 mA h g-1, 93 mA h g-1 and 80 mA h g-1 at 5 C, 10 C and 20 C, respectively. Remarkably, it produces a high discharge capacity of 69.1 mA h g-1 and no fading after 50 cycles even at a high current density of 6800 mA g-1. This journal is

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrode materials are being developed to realise sodium-ion batteries that can provide energy storage solutions. Here, we develop amorphous carbon coated Na7Fe7(PO4)6F3, prepared by combining hydrothermal and solid state reaction methods, as an insertion electrode for sodium-ion batteries applications. Na7Fe7(PO4)6F3 particles are surrounded by a thin layer (∼1.5–2 nm) of amorphous carbon. The Na7Fe7(PO4)6F3/C composite cathode undergoes reversible sodium intercalation/de-intercalation with an average operational potential of ∼3.0 V (vs Na+/Na). This cathode has a capacity of 65 mA h g−1 at 100 mA g−1 current after 60 cycles and features twice higher capacity than that of an uncoated Na7Fe7(PO4)6F3 sample. Therefore, the carbon-coated Na7Fe7(PO4)6F3 composite presents feasible sodium intercalation/de-intercalation capacity, offering possibilities for developing a low cost, high performance sodium-ion battery positive electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandwich-type hybrid carbon nanosheets (SCNMM) consisting of graphene and micro/mesoporous carbon layer are fabricated via a double template method using graphene oxide as the shape-directing agent and SiO2 nanoparticles as the mesoporous guide. The polypyrrole synthesized in situ on the graphene oxide sheets is used as a carbon precursor. The micro/mesoporous strcutures of the SCNMM are created by a carbonization process followed by HF solution etching and KOH treatment. Sulfur is impregnated into the hybrid carbon nanosheets to generate S@SCNMM composites for the cathode materials in Li-S secondary batteries. The microstructures and electrochemical performance of the as-prepared samples are investigated in detail. The hybrid carbon nanosheets, which have a thickness of about 10-25 nm, high surface area of 1588 m2 g-1, and broad pore size distribution of 0.8-6.0 nm, are highly interconnected to form a 3D hierarchical structure. The S@SCNMM sample with the sulfur content of 74 wt% exhibits excellent electrochemical performance, including large reversible capacity, good cycling stability and coulombic efficiency, and good rate capability, which is believed to be due to the structure of hybrid carbon materials with hierarchical porous structure, which have large specific surface area and pore volume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LiFe1 − xSmxPO4/C cathode materials were synthesized though a facile hydrothermal method. Compared with high-temperature solid-phase sintering, the method can allow for the fabrication of low Sm content (2 %), a scarce and expensive rare earth element, while the presence of an optimized carbon coating with large amount of sp2-type carbon sharply increases the material’s electrochemical performance. The high-rate dischargeability at 5 C, as well as the exchange current density, can be increased by 21 and 86 %, respectively, which were attributed to the fine size and the large cell parameter a/c as much. It should be pointed out that the a/c value will be increased for the LiFePO4 Sm-doped papered by both of the two methods, while the mechanism is different: The value c is increased for the front and the value a is decreased for the latter, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some of the prospective electrode materials for lithium-ion batteries are known to have electronic transport limitations preventing them from being used in the electrodes directly. In many cases, however, these materials may become practical if they are applied in the form of nanocomposites with a carbon component, e.g. via incorporating nanoparticles of the phase of interest into a conducting network of carbon nanotubes. A simple way to prepare oxide-carbon nanotube composites suitable for the electrodes of lithium-ion batteries is presented in this paper. The method is based on low-energy ball milling. An electrochemically active but insulating phase of LiFeTiO4 is used as a test material. It is demonstrated that the LiFeTiO4-carbon nanotube composite is not only capable of having significantly higher capacity (∼105-120 mA h g-1vs. the capacity of ∼65-70 mA h g -1 for the LiFeTiO4 nanoparticles) at a slow current rate but may also operate at reasonably high current rates. © the Partner Organisations 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the expected theoretical capacity of 2596 mA h g-1, phosphorus is considered to be the highest capacity anode material for sodium-ion batteries and one of the most attractive anode materials for lithium-ion systems. This work presents a comprehensive study of phosphorus-carbon nanocomposite anodes for both lithium-ion and sodium-ion batteries. The composite electrodes are able to display high initial capacities of approximately 1700 and 1300 mA h g-1 in lithium and sodium half-cells, respectively, when the cells are tested within a larger potential windows of 2.0-0.01 V vs. Li/Li+ and Na/Na+. The level of demonstrated capacity is underpinned by the storage mechanism, based on the transformation of phosphorus to Li3P phase for lithium cells and an incomplete transformation to Na3P phase for sodium cells. The capacity deteriorates upon cycling, which is shown to originate from disintegration of electrodes and their delamination from current collectors by post-cycling ex situ electron microscopy. Stable cyclic performance at the level of ∼700 and ∼350-400 mA h g-1 can be achieved if the potential windows are restricted to 2.0-0.67 V vs. Li/Li+ for lithium and 2-0.33 vs. Na/Na+ for sodium half-cells. The results are critically discussed in light of existing literature reports

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Li0.5Fe2.5O4 nanoparticles of about 80 nm were synthesized through a hydrothermal method, followed by a solid state reaction between LiOH·H2O and Fe2O3. The Li0.5Fe2.5O4 nanoparticles exhibit a remarkable high capacity (up to 1124 mA h g-1), a good cycle stability (650 mA h g-1 after 50 cycles) and excellent coulombic efficiency. © 2014 the Partner Organisations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the surge of interest in miniaturized implanted medical devices (IMDs), implantable power sources with small dimensions and biocompatibility are in high demand. Implanted battery/supercapacitor devices are commonly packaged within a case that occupies a large volume, making miniaturization difficult. In this study, we demonstrate a polymer electrolyte-enabled biocompatible magnesium-air battery device with a total thickness of approximately 300 μm. It consists of a biocompatible polypyrrole-para(toluene sulfonic acid) cathode and a bioresorbable magnesium alloy anode. The biocompatible electrolyte used is made of choline nitrate (ionic liquid) embedded in a biopolymer, chitosan. This polymer electrolyte is mechanically robust and offers a high ionic conductivity of 8.9 × 10(-3) S cm(-1). The assembled battery delivers a maximum volumetric power density of 3.9 W L(-1), which is sufficient to drive some types of IMDs, such as cardiac pacemakers or biomonitoring systems. This miniaturized, biocompatible magnesium-air battery may pave the way to a future generation of implantable power sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LiFe1 − xSmxPO4/C cathode materials were synthesized though a facile hydrothermal method. Compared with high-temperature solid-phase sintering, the method can allow for the fabrication of low Sm content (2 %), a scarce and expensive rare earth element, while the presence of an optimized carbon coating with large amount of sp2-type carbon sharply increases the material’s electrochemical performance. The high-rate dischargeability at 5 C, as well as the exchange current density, can be increased by 21 and 86 %, respectively, which were attributed to the fine size and the large cell parameter a/c as much. It should be pointed out that the a/c value will be increased for the LiFePO4 Sm-doped papered by both of the two methods, while the mechanism is different: The value c is increased for the front and the value a is decreased for the latter, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owing to the unique properties of certain Ionic liquids (ILs) as safe and green solvents, as well as the potential of sodium as an alternative to lithium as charge carriers, we investigate gel sodium electrolytes as safe, low cost and high performance materials with sufficient mechanical properties for application in sodium battery technologies. We investigate the effect of formation of two types of gel electrolytes on the properties of IL electrolytes known to support Na/Na+ electrochemistry. The ionic conductivity is only slightly decreased by 0.0005 and 0.0002 S cm-1 in the case of 0.3 and 0.5 M NaNTf2 systems respectively as the physical properties transition from liquid to gel. We observed facile plating and stripping of Na metal around 0 V vs. Na/Na+ through the cyclic voltammetry. A wide-temperature range of the gelled IL state, of more than 100 K around room temperature, is achieved in the case of 0.3 and 0.5 M NaNTf2. We conclude that the formation of a gel does not significantly affect the liquid-like ion dynamics in these materials, as further evidenced by DSC and FTIR analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis was focused on developing alloy based anode materials for Li-ion and Na-ion batteries. It helps to reduce the size and increase the energy density of the batteries. Furthermore, a novel cathode material was developed for Na-ion batteries which showed good cycling performance over a period of 100 cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zwitterions with a cyano group on the side chain (CZ) were synthesized. Although the addition of CZ caused a slightly negative effect on viscosity, ionic conductivity, limiting current density, and lithium transference number, the oxidation limit of PEGDME/lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) composites was improved to over 5 V. For charge/discharge testing using Li|electrolyte|LiCoO2 cells, the cycle stability of PEGDME/LiTFSA with CZ in the voltage range of 3.0-4.6 V was much higher than that of PEGDME/LiTFSA. Incorporating a small mole fraction of CZ into PEGDME-based electrolytes prevented an increase in the interface resistance between the electrolyte and cathode with increasing numbers of the cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports results from electrochemical evaluations of electrodes used as cathodes for a hydrogen evolution reaction and anodes in Ni-MH batteries that had been surface-modified by micro-encapsulation, co-deposition and sol-gel methods. The surface modifications produced actual improvements in the corresponding electrochemical reactions by enhancing the performance and/or the mechanical stability of the electrode material. (c) 2005 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)