963 resultados para NHE isoforms
Resumo:
Hemocyanins are large copper-containing respiratory proteins that play a role in oxygen transport in many molluscs. In some species only one hemocyanin isoform is present while in others two are expressed. The physiological relevance of these isoforms is unclear and the developmental and tissue-specific expression of hemocyanin genes is largely unknown. Here we show that two hemocyanin genes in the gastropod Haliotis asinina, which encode H. asinina hemocyanin (HaH1) and HaH2 isoforms, are developmentally expressed. These genes initially are expressed in a small number of mesenchyme cells at trochophore and pre-torsional veliger stages, with HaH1 expression slightly preceding HaH2. These cells largely are localized to the visceral mass, although a small number of cells are present in head and foot regions. Following metamorphosis the isoforms show overlapping as well as isoform-specific expression profiles, suggesting some degree of isoform-specific function.
Resumo:
The prostate-specific antigen-related serine protease gene, kallikrein 4 (KLK4), is expressed in the prostate and, more importantly, overexpressed in prostate cancer. Several KLK4 mRNA splice variants have been reported, but it is still not clear which of these is most relevant to prostate cancer. Here we report that, in addition to the full-length KLK4 (KLK4-254) transcript, the exon 1 deleted KLK4 transcripts, in particular, the 5'-truncated KLK4-205 transcript, is expressed in prostate cancer. Using V5/His6 and green fluorescent protein (GFP) carboxy terminal tagged expression constructs and immunocytochemical approaches, we found that hK4-254 is cytoplasmically localized, while the N-terminal truncated hK4-205 is in the nucleus of transfected PC-3 prostate cancer cells. At the protein level, using anti-hK4 peptide antibodies specific to different regions of hK4-254 (N-terminal and C-terminal), we also demonstrated that endogenous hK4-254 (detected with the N-terminal antibody) is more intensely stained in malignant cells than in benign prostate cells, and is secreted into seminal fluid. In contrast, for the endogenous nuclear-localized N-terminal truncated hK4-205 form, there was less difference in staining intensity between benign and cancer glands. Thus, KLK4-254/hK4-254 may have utility as an immunohistochemical marker for prostate cancer. Our studies also indicate that the expression levels of the truncated KLK4 transcripts, but not KLK4-254, are regulated by androgens in LNCaP cells. Thus, these data demonstrate that there are two major isoforms of hK4 (KLK4-254/hK4-254 and KLK4-205/hK4-205) expressed in prostate cancer with different regulatory and expression profiles that imply both secreted and novel nuclear roles.
Resumo:
Visualisation of multiple isoforms of kappa-casein on 2-D gels is restricted by the abundant alpha- and beta-caseins that not only limit gel loading but also migrate to similar regions as the more acidic kappa-casein isoforms. To overcome this problem, we took advantage of the absence of cysteine residues in alpha(S1)- and beta-casein by devising an affinity enrichment procedure based on reversible biotinylation of cysteine residues. Affinity capture of cysteine-containing proteins on avidin allowed the removal of the vast majority of alpha(S1)- and beta-casein, and on subsequent 2-D gel analysis 16 gel spots were identified as kappa-casein by PMF. Further analysis of the C-terminal tryptic peptide along with structural predictions based on mobility on the 2-D gel allowed us to assign identities to each spot in terms of genetic variant (A or B), phosphorylation status (1, 2 or 3) and glycosylation status (from 0 to 6). Eight isoforms of the A and B variants with the same PTMs were observed. When the casein fraction of milk from a single cow, homozygous for the B variant of kappa-casein, was used as the starting material, 17 isoforms from 13 gel spots were characterised. Analysis of isoforms of low abundance proved challenging due to the low amount of material that could be extracted from the gels as well as the lability of the PTMs during MS analysis. However, we were able to identify a previously unrecognised site, T-166, that could be phosphorylated or glycosylated. Despite many decades of analysis of milk proteins, the reasons for this high level of heterogeneity are still not clear.
Resumo:
Golgi membranes and Golgi-derived vesicles are associated with multiple cytoskeletal proteins and motors, the diversity and distribution of which have not yet been defined. Carrier vesicles were separated from Golgi membranes, using an in vitro budding assay, and different populations of vesicles were separated using sucrose density gradients. Three main populations of vesicles labeled with beta-COP, gamma-adaptin, or p200/myosin II were separated and analyzed for the presence of actin/actin-binding proteins, beta-Actin was bound to Golgi cisternae and to all populations of newly budded vesicles. Centractin was selectively associated with vesicles co-distributing with beta-COP-vesicles, while p200/myosin II (non-muscle myosin IIA) and non-muscle myosin IIB were found on different vesicle populations. Isoforms of the Tm5 tropomyosins were found on selected Golgi-derived vesicles, while other Tm isoforms did not colocalize with Tm5 indicating the association of specialized actin filaments with Golgi-derived vesicles. Golgi-derived vesicles were shown to bind to F-actin polymerized from cytosol with Jasplakinolide. Thus, newly budded, coated vesicles derived from Golgi membranes can bind to actin and are customized for differential interactions with microfilaments by the presence of selective arrays of actin-binding proteins.
Resumo:
Plasma α-tocopherol (AT) concentrations are inversely related to cardiovascular (CV) risk; however, intervention studies with AT have failed to show any consistent benefit against CV disease (CVD). Proteomics offers the opportunity to examine novel effects of AT supplementation on protein expression and therefore improve our understanding of the physiological roles of AT. Thus, to investigate the effects of AT supplementation on the plasma proteome of healthy subjects we have undertaken a double-blind, randomised, parallel design supplementation study in which healthy subjects (n = 32; 11 male and 21 female) consumed AT supplements (134 or 268 mg/day) or placebo capsules for up to 28 days. Plasma samples were obtained before supplementation and after 14 and 28 days of supplementation for analysis of changes in the plasma proteome using 2-DE and MALDI-MS. Using semiquantitative proteomics, we observed that proapolipoprotein A1 (identified by MS and Western blotting) was altered at least two-fold. Using quantitative ELISA techniques, we confirmed a significant increase in plasma apolipoprotein A1 concentration following supplementation with AT which was both time and dose dependent (p < 0.01 after 28 days supplementation with 268 mg AT/day). These data demonstrate the time and dose sensitivity of the plasma proteome to AT supplementation. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
The vacuolar H(+)-ATPase (V-ATPase), a multisubunit, adenosine triphosphate (ATP)-driven proton pump, is essential for numerous cellular processes in all eukaryotes investigated so far. While structure and catalytic mechanism are similar to the evolutionarily related F-type ATPases, the V-ATPase's main function is to establish an electrochemical proton potential across membranes using ATP hydrolysis. The holoenzyme is formed by two subcomplexes, the transmembraneous V(0) and the cytoplasmic V(1) complexes. Sequencing of the whole genome of the ciliate Paramecium tetraurelia enabled the identification of virtually all the genes encoding V-ATPase subunits in this organism and the studying of the localization of the enzyme and roles in membrane trafficking and osmoregulation. Surprisingly, the number of V-ATPase genes in this free-living protozoan is strikingly higher than in any other species previously studied. Especially abundant are V(0)-a-subunits with as many as 17 encoding genes. This abundance creates the possibility of forming a large number of different V-ATPase holoenzymes by combination and has functional consequences by differential targeting to various organelles.
Resumo:
In the Paramecium tetraurelia genome, 17 genes encoding the 100-kDa-subunit (a-subunit) of the vacuolar-proton-ATPase were identified, representing by far the largest number of a-subunit genes encountered in any organism investigated so far. They group into nine clusters, eight pairs with >82% amino acid identity and one single gene. Green fluorescent protein-tagging of representatives of the nine clusters revealed highly specific targeting to at least seven different compartments, among them dense core secretory vesicles (trichocysts), the contractile vacuole complex, and phagosomes. RNA interference for two pairs confirmed their functional specialization in their target compartments: silencing of the trichocyst-specific form affected this secretory pathway, whereas silencing of the contractile vacuole complex-specific form altered organelle structure and functioning. The construction of chimeras between selected a-subunits surprisingly revealed the targeting signal to be located in the C terminus of the protein, in contrast with the N-terminal targeting signal of the a-subunit in yeast. Interestingly, some chimeras provoked deleterious effects, locally in their target compartment, or remotely, in the compartment whose specific a-subunit N terminus was used in the chimera.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Endurance exercise training as well as leucine supplementation modulates glucose homeostasis and protein turnover in mammals. Here, we analyze whether leucine supplementation alters the effects of endurance exercise on these parameters in healthy mice. Mice were distributed into sedentary (C) and exercise (T) groups. The exercise group performed a 12-week swimming protocol. Half of the C and T mice, designated as the CL and TL groups, were supplemented with leucine (1.5 % dissolved in the drinking water) throughout the experiment. As well known, endurance exercise training reduced body weight and the retroperitoneal fat pad, increased soleus mass, increased VO2max, decreased muscle proteolysis, and ameliorated peripheral insulin sensitivity. Leucine supplementation had no effect on any of these parameters and worsened glucose tolerance in both CL and TL mice. In the soleus muscle of the T group, AS-160(Thr-642) (AKT substrate of 160 kDa) and AMPK(Thr-172) (AMP-Activated Protein Kinase) phosphorylation was increased by exercise in both basal and insulin-stimulated conditions, but it was reduced in TL mice with insulin stimulation compared with the T group. Akt phosphorylation was not affected by exercise but was lower in the CL group compared with the other groups. Leucine supplementation increased mTOR phosphorylation at basal conditions, whereas exercise reduced it in the presence of insulin, despite no alterations in protein synthesis. In trained groups, the total FoxO3a protein content and the mRNA for the specific isoforms E2 and E3 ligases were reduced. In conclusion, leucine supplementation did not potentiate the effects of endurance training on protein turnover, and it also reduced its positive effects on glucose homeostasis.