986 resultados para N-N split interstitials
Resumo:
Rupture forces of ligand-receptor interactions, such as proteins-proteins, proteins-cells, and cells-tissues, have been successfully measured by atomic force spectroscopy (AFS). For these measurements, the ligands and receptors were chemically modified so that they can be immobilized on the tip and on a substrate, respectively. The ligand interact the receptor when the tip approaches the substrate. This interaction can be studied by measuring rupture force upon retraction. However, this technique is not feasible for measurements involving small molecules, since they form only few H-bonds with their corresponding receptors. Modifying small molecules for immobilization on surfaces may block or change binding sites. Thus, recorded rupture forces might not reflect the full scope of the involved small ligand-receptor interactions.rnIn my thesis, a novel concept that allows measuring the rupture force of small involved ligand-receptor interactions and does not require molecular modification for immobilization was introduced. The rupture force of small ligand-receptor interaction is not directly measured but it can be determined from measurements in the presence and in the absence of the ligand. As a model system, the adenosine mono phosphate (AMP) and the aptamer that binds AMP were selected. The aptamer (receptor) is a single stranded DNA that can partially self-hybridize and form binding pockets for AMP molecules (ligands). The bonds between AMP and aptamer are provided by several H-bonds and pair stacking.rnIn the novel concept, the aptamer was split into two parts (oligo a and oligo b). One part was immobilized on the tip and the other one on the substrate. Approaching the tip to the substrate, oligo a and oligo b partially hybridized and the binding pockets were formed. After adding AMP into the buffer solution, the AMP bound in the pockets and additional H-bonds were formed. Upon retraction of the tip, the rupture force of the AMP-split aptamer complex was measured. In the presence of excess AMP, the rupture force increased by about 10 pN. rnThe dissociation constant of the AMP-split aptamer complex was measured on a single molecular level (~ 4 µM) by varying the AMP concentrations and measuring the rupture force at each concentration. Furthermore, the rupture force was amplified when more pockets were added to the split aptamer. rnIn the absence of AMP, the thermal off-rate was slightly reduced compared to that in the presence of AMP, indicating that the AMP stabilized the aptamer. The rupture forces at different loading rates did not follow the logarithmic fit which was usually used to describe the dependence of rupture forces at different loading rates of oligonucleotides. Two distinguished regimes at low and high loading rates were obtained. The two regimes were explained by a model in which the oligos located at the pockets were stretched at high loading rates. rnThe contribution of a single H-bond formed between the AMP molecule and the split aptamer was measured by reducing the binding groups of the AMP. The rupture forces reduce corresponding to the reduction of the binding groups. The phosphate group played the most important role in the formation of H-bond network between the AMP molecule and the split aptamer. rn
Resumo:
Removal of miniplates is a controversial topic in oral and maxillofacial surgery. Originally, miniplates were designed to be removed on completion of bone healing. The introduction of low profile titanium miniplates has led to the routine removal of miniplates becoming comparatively rare in many parts of the world. Few studies have investigated the reasons for non-routine removal of miniplates and the factors that affect osteosynthesis after osteotomy in large numbers of patients. The aim of the present study was to investigate complications related to osteosynthesis after bilateral sagittal split osteotomy (BSSO) in a large number (n=153) of patients. In addition to the rates of removal, emphasis was placed on investigating the reasons and risk factors associated with symptomatic miniplate removal. The rate of plate removal per patient was 18.6%, the corresponding rate per plate being 18.2%. Reasons for plate removal included plate-related complications in 16 patients and subjective discomfort in 13 patients. Half of the plates were removed during the first postoperative year. Smoking was the only significant predictor for plate removal. Patients undergoing orthognathic surgery should be screened with regard to smoking and encouraged and assisted to cease smoking, at least perioperatively.
Resumo:
PURPOSE: To evaluate the ratio of soft tissue to hard tissue in bilateral sagittal split setback osteotomy with rigid internal fixation or wire fixation. MATERIALS AND METHODS: A literature search was performed using PubMed, Medline, CINAHL, Web of Science, the Cochrane Library, and Google Scholar Beta. From the original 766 articles identified, 8 articles were included. Two articles were prospective and 6 retrospective. The follow-up period ranged from 1 year to 12.7 years for rigid internal fixation. Two articles on wire fixation were found to be appropriate for inclusion. RESULTS: The differences between short- and long-term ratios of the lower lip to lower incisors for bilateral sagittal split setback osteotomy with rigid internal fixation or wire fixation were quite small. The ratio was 1:1 in the long term and by trend slightly lower in the short term. No distinction was seen between the short- and long-term ratios for mentolabial fold. The ratio was found to be 1:1 for the mentolabial fold to point B. In the short term, the ratio of the soft tissue pogonion to the pogonion showed a 1:1 ratio, with a trend to be lower in the long term. The upper lip showed mainly protrusion, but the amount was highly variable. CONCLUSIONS: This systematic review shows that evidence-based conclusions on soft tissue changes are difficult to draw. This is mostly because of inherent problems of retrospective studies, inferior study designs, and the lack of standardized outcome measurements. Well-designed prospective studies with sufficient samples and excluding additional surgery, ie, genioplasty or maxillary surgery, are needed.
Resumo:
PURPOSE: The purpose of the present systematic review was to evaluate the soft tissue/hard tissue ratio in bilateral sagittal split advancement osteotomy (BSSO) with rigid internal fixation (RIF) or wire fixation (WF). MATERIALS AND METHODS: The databases PubMed, Medline, CINAHL, Web of Science, Cochrane Library, and Google Scholar Beta were searched. From the original 711 articles identified, 12 were finally included. Only 3 studies were prospective and 9 were retrospective. The postoperative follow-up ranged from 3 months to 12.7 years for RIF and 6 months to 5 years for WF. RESULTS: The short- and long-term ratios for the lower lip to lower incisor for BSSO with RIF or WF were 50%. No difference between the short- and long-term ratios for the mentolabial-fold to point B and soft tissue pogonion to pogonion could be observed. It was a 1:1 ratio. One exception was seen for the long-term results of the soft tissue pogonion to pogonion in BSSO with RIF; they tended to be greater than a 1:1 ratio. The upper lip mainly showed retrusion but with high variability. CONCLUSIONS: Despite a large number of studies on the short- and long-term effects of mandibular advancement by BSSO, the results of the present systematic review have shown that evidence-based conclusions on soft tissue changes are still unknown. This is mostly because of the inherent problems of retrospective studies, inferior study designs, and the lack of standardized outcome measures. Well-designed prospective studies with sufficient sample sizes that have excluded patients undergoing additional surgery (ie, genioplasty or maxillary surgery) are needed.
Resumo:
OBJECTIVES: One main problem occurring after bone grafting is resorption, leading to insufficient bone volume and quality, and may subsequently cause dental implant failure. Comparison of graft volume and bone density of iliac crest and calvarial transplants determined by animal studies demonstrates significantly lower resorption of bone grafts harvested from the skull. This paper is the first clinical study evaluating bone volume and density changes of calvarial split bone grafts after alveolar ridge reconstruction. MATERIAL AND METHODS: Bone volume and density were determined using CT scans and the software program Dicom Works in a total of 51 calvarial grafts after alveolar ridge augmentation in 15 patients. CT scans were taken in all 15 patients immediately after grafting (T0) and before implantation after a postoperative period of 6 months (T1). In five patients (26 calvarial grafts), a 1-year follow-up was performed (T2). RESULTS: A mean volume reduction of 16.2% at T1 (15 patients) and 19.2% at T2 (five patients) was observed. Bone density was high--about 1000 Hounsfield units--and did not change during the 1-year period. At the time of implantation, 41 transplants were classified as quality 1 bone and 10 as quality 2-3 bone. Grafting area and the technique used for grafting (inlay or onlay graft) did not affect the postoperative bone volume reduction. Generalized osteoporosis did not increase the resorption rate of calvarial transplants. CONCLUSION: Based on these findings, calvarial split bone grafts are a promising alternative for alveolar ridge reconstruction in dental implantology.
Resumo:
OBJECTIVES: This article describes reconstruction of the severely atrophic mandible using calvarial bone grafts for implant-supported prosthetic oral rehabilitation. The study aim was to evaluate the efficacy of the treatment by determining implant survival and complication rates, and the extent of the postoperative graft resorption. STUDY DESIGN: Ten patients who underwent the treatment were followed clinically and radiologically using panoramic radiographs and CT scans during a mean postoperative period of 30 months. RESULTS: Good bone healing was observable 6 months postoperatively. The height reduction measured on panoramic radiographs was insignificant (mean 0.68 mm). Only minor complications occurred. Implant survival was 95%. Prosthodontic treatment was successfully performed in all cases, resulting in an improvement of oral function. Histological analysis of 1 bone biopsy showed minimal resorptive changes in otherwise very dense bone. CONCLUSION: Augmentation using calvarial grafts is a promising treatment alternative for the severely atrophic mandible.
Resumo:
PURPOSE: The aim of the study was to conduct a long-term prospective follow-up on the stability of soft tissues after bilateral sagittal split osteotomy (BSSO) with rigid internal fixation to set back the mandible. PATIENTS AND METHODS: Seventeen consecutive patients (6 females, 11 males) were re-examined 12.7 years (T5) after surgery. The precedent follow-ups included: before surgery (T1), 5 days (T2) after surgery, 6.6 months (T3) after surgery, and 14.4 months after (T4) surgery. Lateral cephalograms were traced by hand, digitized, and evaluated with the Dentofacial Planner program (Dentofacial Software, Toronto, Canada). The x-axis for the system of coordinates ran through Sella (point 0) and the line NSL -7 degrees. RESULTS: The net effect of the soft tissue chin (soft tissue pogonion) was 79% of the setback at pogonion. At the lower lip (labrale inferior) it was 100% of the setback at lower incisor position. Point B' followed point B to 99%. Labrale inferior and menton' also showed a significant backward, as well as a downward, movement (T5 to T2). Gender correlated significantly (P = .004) with the anterior displacement of point B' and pogonion' (P = .012). The soft tissue relapse 12.7 years after BSSO setback surgery at point B' was 3% and 13% at pogonion'. CONCLUSION: Among the reasons for 3-dimensional long-term soft tissue changes of shape, the surgical technique, the normal process of human aging, the initial growth direction, and remodeling processes must be considered. Growth direction positively influenced the long-term outcome of setback surgery in female compared with male patients because further posterior movement of the mandibular soft tissue occurred.
Resumo:
The aim of the study was to conduct a long-term follow-up investigation of the stability of hard and soft tissues after bilateral sagittal split osteotomy (BSSO) with rigid internal (RIF) fixation to advance the mandible. Sixteen consecutive patients (12 females and 4 males, mean age 21.4 years) were available for re-examination 12.7 years (T5) after surgery. The preceding follow-ups were before (T1), and 5 days (T2), 7.3 months (T3), and 13.9 months (T4) after surgery. Lateral cephalograms were traced by hand, digitized, and evaluated with the Dentofacial Planner program. The x-axis for the system of co-ordinates ran through sella (point zero) and the line NSL -7 degrees. Thus, the program determined the x- and y-values of each variable and the usual angles and distances. Statistical analysis was carried out using Wilcoxon's matched-pair signed-ranks test with Bonferroni adjustments. The relationships between the examined variables were analysed by Spearman rank correlation coefficients. The backward relapse at point B (T5) was 2.42 mm, or 50 per cent, and at pogonion 3.21 mm, or 60 per cent of the initial advancement. The mean net effect at T5 on the labial fold (soft tissue point B) was 94 per cent of the advancement at point B. For the soft tissue chin (soft tissue pogonion), it was 119 per cent of the advancement at pogonion. The net effect on the lower lip (labrale inferior) was 55 per cent of the advancement at incision inferior. The amount of the surgical advancement of the mandible was correlated with the long-term relapse in point B. Among possible reasons for this relapse are the initial soft tissue profile, the initial growth direction, and the remodelling processes of the hard tissue.