906 resultados para Négociation collective
Resumo:
Infrared absorption due to a collective excitation of a two-dimensional electronic gas was observed in GaAs/AlxGa1-xAs multiple-quantum wells when the incident light is polarized parallel to the quantum-well plane. We attribute this phenomenon to a plasma oscillation in the quantum wells. The measured wavelength of the absorption peak due to the plasma oscillation agrees with our theoretical analysis. In addition, in this study the plasma-phonon coupling effect is also fitted to the experimental result. We show that the absorption is not related to the intersubband transitions but to the intrasubband transition, which originates from a plasma oscillation.
Resumo:
Within the hadronic transport model IBUU04, we study the density-dependent symmetry energy by using the neutron-proton differential flow from the Sn-132+Sn-124 reactions at beam energies of 200, 400, 600 and 800MeV per nucleon. The strong effect of the symmetry energy is shown at the incident beam energy of 400 MeV/A. The small medium-effect of the neutron-proton differential flow is also found. We also study the neutron-proton differential flows with impact parameters of 3, 5, 7 fm. It is found that in semi-central collisions the sensitivity of the neutron-proton differential flow to the symmetry energy is larger.
Resumo:
The structure of neutron-rich Cr isotopes is systematically investigated by using the spherical shell model. The calculations reproduce well the known energy levels for the even-even Cr52-62 and odd-mass Cr53-59 nuclei, and predict a lowering of excitation energies around neutron number N = 40. The calculated B(E2; 2(1)(+) -> 0(1)(+)) systematics shows a pronounced collectivity around N = 40; a similar characteristic behavior has been suggested for Zn and Ge isotopes. Causes for the sudden drop of the 9/2(1)(+) energy in Cr-59 and the appearance of very low 0(2)(+) states around N = 40 are discussed. We also predict a new band with strong collectivity built on the 0(2)(+) state in the N = 40 isotope Cr-64.
Resumo:
The high-spin states of Pm-140 have been investigated through the reaction Te-126(F-19, 5n) at a beam energy of 90 MeV. A previous level scheme based on the 8(-) isomer has been updated with spin up to 23 (h) over bar. A total of 22 new levels and 41 new transitions were identified. Six collective bands were observed. Five of them were expanded or re-constructed, and one of them was newly identified. The systematic signature splitting and inversion of the yrast pi h(11/2)circle times vh(11/2) band in Pr and Pm odd-odd isotopes has been discussed. Based on the systematic comparison, two Delta I = 2 bands were proposed as double-decoupled bands; other two bands with strong Delta I = 1 M1 transitions inside the bands were suggested as oblate bands with gamma similar to -60 degrees; another band with large signature splitting has been proposed with oblate-triaxial deformation with gamma similar to -90 degrees. The characteristics for these bands have been discussed.
Resumo:
Erskine, Toni, Can Institutions Have Responsibilities? Collective Moral Agency and International Relations (New York: Palgrave Macmillan, 2004), pp.xii+241 RAE2008
Resumo:
Accepted Version
Resumo:
The Emerging Church Movement (ECM) is a primarily Western religious phenomenon, identifiable by its critical ‘deconstruction’ of ‘modern’ religion. While most prominent in North America, especially the United States, some of the most significant contributors to the ECM ‘conversation’ have been the Belfast-based Ikon Collective and one of its founders, philosopher Peter Rollins. Their rootedness in the unique religious, political and social landscape of Northern Ireland in part explains their position on the ‘margins’ of the ECM, and provides many of the resources for their contributions. Ikon’s development of ‘transformance art’ and its ‘leaderless’ structure raise questions about the institutional viability of the wider ECM. Rollins’ ‘Pyrotheology’ project, grounded in his reading of post-modern philosophy, introduces more radical ideas to the ECM conversation. Northern Ireland’s ‘Troubles’ and ‘marginal’ location provides the ground from which Rollins and Ikon have been able to expose the boundaries of the ECM and raise questions about just how far the ECM may go in its efforts to transform Western Christianity.
Resumo:
The Million Mom March (favoring gun control) and Code Pink: Women for Peace (focusing on foreign policy, especially the war in Iraq) are organizations that have mobilized women as women in an era when other women's groups struggled to maintain critical mass and turned away from non-gender-specific public issues. This article addresses how these organizations fostered collective consciousness among women, a large and diverse group, while confronting the echoes of backlash against previous mobilization efforts by women. We argue that the March and Code Pink achieved mobilization success by creating hybrid organizations that blended elements of three major collective action frames: maternalism, egalitarianism, and feminine expression. These innovative organizations invented hybrid forms that cut across movements, constituencies, and political institutions. Using surveys, interviews, and content analysis of organizational documents, this article explains how the March and Code Pink met the contemporary challenges facing women's collective action in similar yet distinct ways. It highlights the role of feminine expression and concerns about the intersectional marginalization of women in resolving the historic tensions between maternalism and egalitarianism. It demonstrates hybridity as a useful analytical lens to understand gendered organizing and other forms of grassroots collective action. © 2010 American Political Science Association.
Resumo:
Governments across the globe have squandered treasure and imprisoned millions of their own citizens by criminalising the use and sale of recreational drugs. But use of these drugs has remained relatively constant, and the primary victims are the users themselves. Meanwhile, antimicrobial drugs that once had the power to cure infections are losing their ability to do so, compromising the health of people around the world. The thesis of this essay is that policymakers should stop wasting resources trying to fight an unwinnable and morally dubious war against recreational drug users, and start shifting their attention to the serious threat posed by our collective misuse of antibiotics.
Resumo:
Trust and cooperation constitute cornerstones of common-pool resource theory, showing that "prosocial" strategies among resource users can overcome collective action problems and lead to sustainable resource governance. Yet, antisocial behavior and especially the coexistence of prosocial and antisocial behaviors have received less attention. We broaden the analysis to include the effects of both "prosocial" and "antisocial" interactions. We do so in the context of marine protected areas (MPAs), the most prominent form of biodiversity conservation intervention worldwide. Our multimethod approach relied on lab-in-the-field economic experiments (n = 127) in two MPA and two non-MPA communities in Baja California, Mexico. In addition, we deployed a standardized fishers' survey (n = 544) to verify the external validity of our findings and expert informant interviews (n = 77) to develop potential explanatory mechanisms. In MPA sites, prosocial and antisocial behavior is significantly higher, and the presence of antisocial behavior does not seem to have a negative effect on prosocial behavior. We suggest that market integration, economic diversification, and strengthened group identity in MPAs are the main potential mechanisms for the simultaneity of prosocial and antisocial behavior we observed. This study constitutes a first step in better understanding the interaction between prosociality and antisociality as related to natural resources governance and conservation science, integrating literatures from social psychology, evolutionary anthropology, behavioral economics, and ecology.
Resumo:
We investigate entanglement between collective operators of two blocks of oscillators in an infinite linear harmonic chain. These operators are defined as averages over local operators (individual oscillators) in the blocks. On the one hand, this approach of "physical blocks" meets realistic experimental conditions, where measurement apparatuses do not interact with single oscillators but rather with a whole bunch of them, i.e., where in contrast to usually studied "mathematical blocks" not every possible measurement is allowed. On the other, this formalism naturally allows the generalization to blocks which may consist of several noncontiguous regions. We quantify entanglement between the collective operators by a measure based on the Peres-Horodecki criterion and show how it can be extracted and transferred to two qubits. Entanglement between two blocks is found even in the case where none of the oscillators from one block is entangled with an oscillator from the other, showing genuine bipartite entanglement between collective operators. Allowing the blocks to consist of a periodic sequence of subblocks, we verify that entanglement scales at most with the total boundary region. We also apply the approach of collective operators to scalar quantum field theory.
Resumo:
Hydrogen bonding in clusters and extended layers of squaric acid molecules has been investigated by density functional computations. Equilibrium geometries, harmonic vibrational frequencies, and energy barriers for proton transfer along hydrogen bonds have been determined using the Car-Parrinello method. The results provide crucial parameters for a first principles modeling of the potential energy surface, and highlight the role of collective modes in the low-energy proton dynamics. The importance of quantum effects in condensed squaric acid systems has been investigated, and shown to be negligible for the lowest-energy collective proton modes. This information provides a quantitative basis for improved atomistic models of the order-disorder and displacive transitions undergone by squaric acid crystals as a function of temperature and pressure. (C) 2001 American Institute of Physics.