914 resultados para Mussel beds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to assess the effects of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis), specimens were reared in aquarium tanks and exposed to elevated conditions of temperature (+3°C) and acidity (-0.3 pH units) for a period of 10 months. The whole system comprised a factorial experimental design with 4 treatments (3 aquaria per treatment): control, lowered pH, elevated temperature, and lowered pH/elevated temperature. Mortality was estimated on a weekly basis and every 2 months, various biometrical parameters and physiological processes were measured: somatic and shell growth, metabolic rates and body fluid acid-base parameters. Mussels were highly sensitive to warming, with 100% mortality observed under elevated temperature at the end of our experiment in October. Mortality rates increased drastically in summer, when water temperature exceeded 25°C. In contrast, our results suggest that survival of this species will not be affected by a pH decrease of 0.3 in the Mediterranean Sea. Somatic and shell growth did not appear very sensitive to ocean acidification and warming during most of the experiment, but were reduced, after summer, in the lowered pH treatment. This was consistent with measured shell net dissolution and observed loss of periostracum, as well as uncompensated extracellular acidosis in the lowered pH treatment indicating a progressive insufficiency in acid-base regulation capacity. However, based on the present dataset, we cannot elucidate if these decreases in growth and regulation capacities after summer are a consequence of lower pH levels during that period or a consequence of a combined effect of acidification and warming. To summarize, while ocean acidification will potentially contribute to lower growth rates, especially in summer when mussels are exposed to sub-optimal conditions, ocean warming will likely pose more serious threats to Mediterranean mussels in this region in the coming decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Late Cenozoic ash deposits cored in Deep Sea Drilling Project Leg 19 in the far northwest Pacific and in the Bering Sea have altered to bentonite beds. Some bentonite layers were subsequently replaced by carbonate beds. A significant part of the Neogene volcanic history of land areas adjacent to the far north Pacific is represented by these diagenetic deposits. Bentonite beds are composed of authigenic smectite and minor amounts of clinoptilolite. Authigenic smectite has fewer illite layers than detrital smectite. Opal-A and opal-CT, abundant in Bering Sea sediment, are not found in ash or bentonite layers. The percentage of smectite in the total clay-mineral assemblage of ash beds is greater than that for adjacent terrigenous sediment, but the total amount of clay minerals in ash sequences is less than in surrounding deposits. Morphology of the 17-Å peak of smectite found in ash may represent newly formed, poorly crystalline smectite. Smectite becomes better crystallized as bentonite layers form. The percentage of smectite of the total clay-mineral assemblage in bentonite beds is greater than that in surrounding sediment, and, in contrast to ash beds, the total amount of clay minerals (mostly smectite) in bentonite layers is greater than in adjacent terrigenous sediment. Apparently, silica is not mobilized when volcanic ash layers transform to bentonite beds. Saponite-nontronite varieties of smectite and high Fe/Al and Ti/Al ratios distinguish bentonite beds derived from basaltic parent material from those beds formed from more silicic volcanic ash. These silicic ash beds produce bentonite composed mostly of montmorillonite. The basal sediment section at site 192 is rich with bentonite beds. Smectite in the upper part of this section (Eocene) was formed by low-temperature diagenesis of volcanic debris of intermediate or more silicic composition derived from arc or Pacific volcanoes. In contrast, smectite from the lowest 10 to 20 m of the sedimentary section (Cretaceous) is formed from either low-temperature or hydrothermal alteration of the underlying basaltic basement and associated pyroclastic debris. This near-basement smectite contains Mg and K acquired from sea water and Si, Al, Fe, Ti, and Mn released from the volcanic material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000 µatm), following 6 months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000 µatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750 µatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Larval stages are among those most vulnerable to ocean acidification (OA). Projected atmospheric CO2 levels for the end of this century may lead to negative impacts on communities dominated by calcifying taxa with planktonic life stages. We exposed Mediterranean mussel (Mytilus galloprovincialis) sperm and early life stages to pHT levels of 8.0 (current pH) and 7.6 (2100 level) by manipulating pCO2 level (380 and 1000 ppm). Sperm activity was examined at ambient temperatures (16-17 °C) using individual males as replicates. We also assessed the effects of temperature (ambient and = 20 °C) and pH on larval size, survival, respiration and calcification of late trochophore/early D-veliger stages using a cross-factorial design. Increased pCO2 had a negative effect on the percentage of motile sperm (mean response ratio R= 71%) and sperm swimming speed (R= 74%), possibly indicating reduced fertilization capacity of sperm in low concentrations. Increased temperature had a more prominent effect on larval stages than pCO2, reducing performance (RSize = 90% and RSurvival = 70%) and increasing energy demand (RRespiration = 429%). We observed no significant interactions between pCO2 and temperature. Our results suggest that increasing temperature might have a larger impact on very early larval stages of M. galloprovincialis than OA at levels predicted for the end of the century.