877 resultados para Multiplicity of voices
Resumo:
The role of matter has remained central to the making and the thinking of architecture, yet many attempts to capture its essence have been trapped in a dialectic tension between form and materiality, between material consistency and immaterial modes of perception, between static states and dynamic processes, between the real and the virtual, thus advancing an increasing awareness of the perplexing complexity of the material world. Within that complexity, the notion of agency – emerging from and within ecological, politico-economic and socio-cultural processes – calls for a reconceptualization of matter, and consequently processes of materialisation, offering a new understanding of context and space, approached as a field of dynamic relationships. In this context, cutting across boundaries between architectural discourse and practice as well as across the vast trans-disciplinary territory, this dissertation aims to illustrate a variety of design methodologies that have derived from the relational approach. More specifically, the intention is to offer new insights into spatial epistemologies embedded within the notion of atmosphere – commonly associated with the so-called New Phenomenology – and to reflect upon its implications for architectural production. In what follows, the intended argumentation has a twofold dimension. First, through a scrutiny of the notion of atmosphere, the aim is to explore ways of thinking and shaping reality through relations, thus acknowledging the aforementioned complexity of the material universe disclosed through human and non-human as well as material and immaterial forces. Secondly, despite the fact that concerns for atmospherics have flourished over the last few decades, the objective is to reveal that the conceptual foundations and procedures for the production of atmosphere might be found beneath the surface of contemporary debates. Hence, in order to unfold and illustrate previously advocated assumptions, an archaeological approach is adopted, tracing a particular projective genealogy, one that builds upon an atmospheric awareness. Accordingly, in tracing such an atmospheric awareness the study explores the notoriously ambiguous nature and the twofold dimension of atmosphere – meteorological and aesthetic – and the heterogeneity of meanings embedded in them. In this context, the notion of atmosphere is presented as parallactic. It transgresses the formal and material boundaries of bodies. It calls for a reevaluation of perceptual experience, opening a new gap that exposes the orthodox space-bodyenvironment relationships to questioning. It offers to architecture an expanded domain in which to manifest itself, defining architectural space as a contingent construction and field of engagement, and presenting matter as a locus of production/performance/action. Consequently, it is such an expanded or relational dimension that constitutes the foundation of what in the context of this study is to be referred to as affective tectonics. Namely, a tectonics that represents processual and experiential multiplicity of convergent time and space, body and environment, the material and the immaterial; a tectonics in which matter neither appears as an inert and passive substance, nor is limited to the traditionally regarded tectonic significance or expressive values, but is presented as an active element charged with inherent potential and vitality. By defining such a relational materialism, the intention is to expand the spectrum of material attributes revealing the intrinsic relationships between the physical properties of materials and their performative, transformative and affective capacities, including effects of interference and haptic dynamics – i.e. protocols of transmission and interaction. The expression that encapsulates its essence is: ACTIVE MATERIALITY RESUMEN El significado de la materia ha estado desde siempre ligado al pensamiento y el quehacer arquitectónico. Sin embargo, muchos intentos de capturar su esencia se han visto sumergidos en una tensión dialéctica entre la forma y la materialidad, entre la consistencia material y los modos inmateriales de la percepción, entre los estados estáticos y los procesos dinámicos, entre lo real y lo virtual, revelando una creciente conciencia de la desconcertante complejidad del mundo material. En esta complejidad, la noción de la operatividad o capacidad agencial– que emerge desde y dentro de los procesos ecológicos, políticos y socio-culturales– requiere de una reconceptualización de la materia y los procesos inherentes a la materialización, ofreciendo una nueva visión del contexto y el espacio, entendidos como un campo relacional dinámico. Oscilando entre el discurso arquitectónico y la práctica arquitectónica, y atravesando un extenso territorio trans-disciplinar, el objetivo de la presente tesis es ilustrar la variedad de metodologías proyectuales que emergieron desde este enfoque relacional. Concretamente, la intención es indagar en las epistemologías espaciales vinculadas a la noción de la atmósfera– generalmente asociada a la llamada Nueva Fenomenología–, reflexionando sobre su impacto en la producción arquitectónica. A continuación, el estudio ofrece una doble línea argumental. Primero, a través del análisis crítico de la noción de atmósfera, el objetivo es explorar maneras de pensar y dar forma a la realidad a través de las relaciones, reconociendo la mencionada complejidad del universo material revelado a través de fuerzas humanas y no-humanas, materiales e inmateriales. Segundo, a pesar de que el interés por las atmósferas ha florecido en las últimas décadas, la intención es demostrar que las bases conceptuales y los protocolos proyectuales de la creación de atmósferas se pueden encontrar bajo la superficie de los debates contemporáneos. Para corroborar e ilustrar estas hipótesis se propone una metodología de carácter arqueológico, trazando una particular genealogía de proyectos– la que se basa en una conciencia atmosférica. Asimismo, al definir esta conciencia atmosférica, el estudio explora tanto la naturaleza notoriamente ambigua y la dimensión dual de la atmósfera– meteorológica y estética–, como la heterogeneidad de significados derivados de ellas. En este contexto, la atmósfera se entiende como un concepto detonante, ya que sobrepasa los limites formales y materiales de los cuerpos, llevando a la re-evaluación de la experiencia perceptiva y abriendo a preguntas la ortodoxa relación espacio- cuerpo-ambiente. En consecuencia, la noción de la atmósfera ofrece a la arquitectura una dimensión expandida donde manifestarse, definiendo el espacio como una construcción contingente, performativa y afectiva, y presentando la materia como locus de producción/ actuación/ acción. Es precisamente esta dimensión expandida relacional la que constituye una base para lo que en el contexto del presente estudio se define como una tectónica afectiva. Es decir, una tectónica que representa una multiplicidad procesual y experiencial derivada de la convergencia entre el tiempo y el espacio, el cuerpo y el entorno, lo material y lo inmaterial; una tectónica en la que la materia no aparece como una substancia pasiva e inerte, ni es limitada al significado considerado tradicionalmente constructivo o a sus valores expresivos, sino que se presenta como elemento activo cargado de un potencial y vitalidad inherentes. A través de la definición de este tipo de materialismo afectivo, la intención es expandir el espectro de los atributos materiales, revelando las relaciones intrínsecas entre las propiedades físicas de los materiales y sus capacidades performativas, transformativas y afectivas, incluyendo efectos de interferencias y dinámicas hápticas– o dicho de otro modo, protocolos de transmisión e interacción. Una expresión que encapsula su esencia vendría a ser: MATERIALIDAD ACTIVA
Resumo:
G1/S and G2/M cell cycle checkpoints maintain genomic stability in eukaryotes in response to genotoxic stress. We report here both genetic and functional evidence of a Gadd45-mediated G2/M checkpoint in human and murine cells. Increased expression of Gadd45 via microinjection of an expression vector into primary human fibroblasts arrests the cells at the G2/M boundary with a phenotype of MPM2 immunopositivity, 4n DNA content and, in 15% of the cells, centrosome separation. The Gadd45-mediated G2/M arrest depends on wild-type p53, because no arrest was observed either in p53-null Li–Fraumeni fibroblasts or in normal fibroblasts coexpressed with p53 mutants. Increased expression of cyclin B1 and Cdc25C inhibited the Gadd45-mediated G2/M arrest in human fibroblasts, indicating that the mechanism of Gadd45-mediated G2/M checkpoint is at least in part through modulation of the activity of the G2-specific kinase, cyclin B1/p34cdc2. Genetic and physiological evidence of a Gadd45-mediated G2/M checkpoint was obtained by using GADD45-deficient human or murine cells. Human cells with endogenous Gadd45 expression reduced by antisense GADD45 expression have an impaired G2/M checkpoint after exposure to either ultraviolet radiation or methyl methanesulfonate but are still able to undergo G2 arrest after ionizing radiation. Lymphocytes from gadd45-knockout mice (gadd45 −/−) also retained a G2/M checkpoint initiated by ionizing radiation and failed to arrest at G2/M after exposure to ultraviolet radiation. Therefore, the mammalian genome is protected by a multiplicity of G2/M checkpoints in response to specific types of DNA damage.
Resumo:
Contact of cultured mammary epithelial cells with the basement membrane protein laminin induces multiple responses, including cell shape changes, growth arrest, and, in the presence of prolactin, transcription of the milk protein β-casein. We sought to identify the specific laminin receptor(s) mediating the multiple cell responses to laminin. Using assays with clonal mammary epithelial cells, we reveal distinct functions for the α6β4 integrin, β1 integrins, and an E3 laminin receptor. Signals from laminin for β-casein expression were inhibited in the presence of function-blocking antibodies against both the α6 and β1 integrin subunits and by the laminin E3 fragment. The α6-blocking antibody perturbed signals mediated by the α6β4 integrin, and the β1-blocking antibody perturbed signals mediated by another integrin, the α subunit(s) of which remains to be determined. Neither α6- nor β1-blocking antibodies perturbed the cell shape changes resulting from cell exposure to laminin. However, the E3 laminin fragment and heparin both inhibited cell shape changes induced by laminin, thereby implicating an E3 laminin receptor in this function. These results elucidate the multiplicity of cell-extracellular matrix interactions required to integrate cell structure and signaling and ultimately permit normal cell function.
Resumo:
Patterns in sequences of amino acid hydrophobic free energies predict secondary structures in proteins. In protein folding, matches in hydrophobic free energy statistical wavelengths appear to contribute to selective aggregation of secondary structures in “hydrophobic zippers.” In a similar setting, the use of Fourier analysis to characterize the dominant statistical wavelengths of peptide ligands’ and receptor proteins’ hydrophobic modes to predict such matches has been limited by the aliasing and end effects of short peptide lengths, as well as the broad-band, mode multiplicity of many of their frequency (power) spectra. In addition, the sequence locations of the matching modes are lost in this transformation. We make new use of three techniques to address these difficulties: (i) eigenfunction construction from the linear decomposition of the lagged covariance matrices of the ligands and receptors as hydrophobic free energy sequences; (ii) maximum entropy, complex poles power spectra, which select the dominant modes of the hydrophobic free energy sequences or their eigenfunctions; and (iii) discrete, best bases, trigonometric wavelet transformations, which confirm the dominant spectral frequencies of the eigenfunctions and locate them as (absolute valued) moduli in the peptide or receptor sequence. The leading eigenfunction of the covariance matrix of a transmembrane receptor sequence locates the same transmembrane segments seen in n-block-averaged hydropathy plots while leaving the remaining hydrophobic modes unsmoothed and available for further analyses as secondary eigenfunctions. In these receptor eigenfunctions, we find a set of statistical wavelength matches between peptide ligands and their G-protein and tyrosine kinase coupled receptors, ranging across examples from 13.10 amino acids in acid fibroblast growth factor to 2.18 residues in corticotropin releasing factor. We find that the wavelet-located receptor modes in the extracellular loops are compatible with studies of receptor chimeric exchanges and point mutations. A nonbinding corticotropin-releasing factor receptor mutant is shown to have lost the signatory mode common to the normal receptor and its ligand. Hydrophobic free energy eigenfunctions and their transformations offer new quantitative physical homologies in database searches for peptide-receptor matches.
Resumo:
We describe here a method to generate combinatorial libraries of oligonucleotides mutated at the codon-level, with control of the mutagenesis rate so as to create predictable binomial distributions of mutants. The method allows enrichment of the libraries with single, double or larger multiplicity of amino acid replacements by appropriate choice of the mutagenesis rate, depending on the concentration of synthetic precursors. The method makes use of two sets of deoxynucleoside-phosphoramidites bearing orthogonal protecting groups [4,4′-dimethoxytrityl (DMT) and 9-fluorenylmethoxycarbonyl (Fmoc)] in the 5′ hydroxyl. These phosphoramidites are divergently combined during automated synthesis in such a way that wild-type codons are assembled with commercial DMT-deoxynucleoside-methyl-phosphoramidites while mutant codons are assembled with Fmoc-deoxynucleoside-methyl-phosphoramidites in an NNG/C fashion in a single synthesis column. This method is easily automated and suitable for low mutagenesis rates and large windows, such as those required for directed evolution and alanine scanning. Through the assembly of three oligonucleotide libraries at different mutagenesis rates, followed by cloning at the polylinker region of plasmid pUC18 and sequencing of 129 clones, we concluded that the method performs essentially as intended.
Resumo:
Induction of phase 2 enzymes, which neutralize reactive electrophiles and act as indirect antioxidants, appears to be an effective means for achieving protection against a variety of carcinogens in animals and humans. Transcriptional control of the expression of these enzymes is mediated, at least in part, through the antioxidant response element (ARE) found in the regulatory regions of their genes. The transcription factor Nrf2, which binds to the ARE, appears to be essential for the induction of prototypical phase 2 enzymes such as glutathione S-transferases (GSTs) and NAD(P)H:quinone oxidoreductase (NQO1). Constitutive hepatic and gastric activities of GST and NQO1 were reduced by 50–80% in nrf2-deficient mice compared with wild-type mice. Moreover, the 2- to 5-fold induction of these enzymes in wild-type mice by the chemoprotective agent oltipraz, which is currently in clinical trials, was almost completely abrogated in the nrf2-deficient mice. In parallel with the enzymatic changes, nrf2-deficient mice had a significantly higher burden of gastric neoplasia after treatment with benzo[a]pyrene than did wild-type mice. Oltipraz significantly reduced multiplicity of gastric neoplasia in wild-type mice by 55%, but had no effect on tumor burden in nrf2-deficient mice. Thus, Nrf2 plays a central role in the regulation of constitutive and inducible expression of phase 2 enzymes in vivo and dramatically influences susceptibility to carcinogenesis. Moreover, the total loss of anticarcinogenic efficacy of oltipraz in the nrf2-disrupted mice highlights the prime importance of elevated phase 2 gene expression in chemoprotection by this and similar enzyme inducers.
Resumo:
Peripheral blood lymphocytes (PBLs) are an important target for gene transfer studies aimed at human gene therapy. However, no reproducibly efficient methods are currently available to transfer foreign, potentially therapeutic genes into these cells. While vectors derived from murine retroviruses have been the most widely used system, their low infection efficiency in lymphocytes has required prolonged in vitro culturing and selection after infection to obtain useful numbers of genetically modified cells. We previously reported that retroviral vectors pseudotyped with vesicular stomatitis G glycoprotein (VSV-G) envelope can infect a wide variety of cell types and can be concentrated to titers of greater than 10(9) infectious units/ml. In this present study, we examined the ability of amphotropic and pseudotyped vectors expressing a murine cell surface protein, B7-1, to infect the human T-cell line Jurkat or human blood lymphocytes. Limiting dilution analysis of transduced Jurkat cells demonstrated that the pseudotyped vector is significantly more efficient in infecting T cells than an amphotropic vector used at the same multiplicity of infection (moi). To identify the transduction efficiency on PBLs, we examined the levels of cell surface expression of the B7-1 surface marker 48 to 72 hr after infection. The transduction efficiency of PBLs with the pseudotyped vector increased linearly with increasing moi to a maximum of approximately 16-32% at an moi of 40. This relatively high efficiency of infection of a T-cell line and of blood lymphocytes with VSV-G pseudotyped virus demonstrates that such modified pseudotyped retrovirus vectors may be useful reagents for studies of gene therapy for a variety of genetic or neoplastic disorders.
Resumo:
Among biological catalysts, cytochrome P450 is unmatched in its multiplicity of isoforms, inducers, substrates, and types of chemical reactions catalyzed. In the present study, evidence is given that this versatility extends to the nature of the active oxidant. Although mechanistic evidence from several laboratories points to a hypervalent iron-oxenoid species in P450-catalyzed oxygenation reactions, Akhtar and colleagues [Akhtar, M., Calder, M. R., Corina, D. L. & Wright, J. N. (1982) Biochem. J. 201, 569-580] proposed that in steroid deformylation effected by P450 aromatase an iron-peroxo species is involved. We have shown more recently that purified liver microsomal P450 cytochromes, including phenobarbital-induced P450 2B4, catalyze the analogous deformylation of a series of xenobiotic aldehydes with olefin formation. The investigation presented here on the effect of site-directed mutagenesis of threonine-302 to alanine on the activities of recombinant P450 2B4 with N-terminal amino acids 2-27 deleted [2B4 (delta2-27)] makes use of evidence from other laboratories that the corresponding mutation in bacterial P450s interferes with the activation of dioxygen to the oxenoid species by blocking proton delivery to the active site. The rates of NADPH oxidation, hydrogen peroxide production, and product formation from four substrates, including formaldehyde from benzphetamine N-demethylation, acetophenone from 1-phenylethanol oxidation, cyclohexanol from cyclohexane hydroxylation, and cyclohexene from cyclohexane carboxaldehyde deformylation, were determined with P450s 2B4, 2B4 (delta2-27), and 2B4 (delta2-27) T302A. Replacement of the threonine residue in the truncated cytochrome gave a 1.6- to 2.5-fold increase in peroxide formation in the presence of a substrate, but resulted in decreased product formation from benzphetamine (9-fold), cyclohexane (4-fold), and 1-phenylethanol (2-fold). In sharp contrast, the deformylation of cyclohexane carboxaldehyde by the T302A mutant was increased about 10-fold. On the basis of these findings and our previous evidence that aldehyde deformylation is supported by added H202, but not by artificial oxidants, we conclude that the iron-peroxy species is the direct oxygen donor. It remains to be established which of the many other oxidative reactions involving P450 utilize this species and the extent to which peroxo-iron and oxenoid-iron function as alternative oxygenating agents with the numerous isoforms of this versatile catalyst.
Resumo:
Many transcription factors and some other proteins contain glutamine repeats; their abnormal expansion has been linked to several dominantly inherited neuro-degenerative diseases. Having found that poly(L-glutamine) alone forms beta-strands held together by hydrogen bonds between their amide groups, we surmised that glutamine repeats may form polar zippers, an unusual motif for protein-protein interactions. To test this hypothesis, we have engineered a Gly-Gln10-Gly peptide into the inhibitory loop of truncated chymotrypsin inhibitor 2 (CI2), a small protein from barley seeds, by both insertion and replacement. Gel filtration resolved both mutant inhibitors into at least three fractions, which analytical ultracentrifugation identified as monomers, dimers, and trimers of the recombinant protein; the truncated wild-type CI2 formed only monomers. CD difference spectra of the dimers and trimers versus wild type indicated that their glutamine repeats formed beta-pleated sheets, while those of the monomers versus wild type were more suggestive of type I beta-turns. The CD spectra of all three fractions remained unchanged even after incubation at 70 degrees C; neither the dimers nor the trimers dissociated at this temperature. We argue that the stability of all three fractions is due to the multiplicity of hydrogen bonds between extended strands of glutamine repeats in the oligomers or within a beta-hairpin formed by the single glutamine repeat of each monomer. Pathological effects may arise when expanded glutamine repeats cause proteins to acquire excessively high affinities for each other or for other proteins with glutamine repeats.
Resumo:
Adenoviral vectors are widely used as highly efficient gene transfer vehicles in a variety of biological research strategies including human gene therapy. One of the limitations of the currently available adenoviral vector system is the presence of the majority of the viral genome in the vector, resulting in leaky expression of viral genes particularly at high multiplicity of infection and limited cloning capacity of exogenous sequences. As a first step to overcome this problem, we attempted to rescue a defective human adenovirus serotype 5 DNA, which had an essential region of the viral genome (L1, L2, VAI + II, pTP) deleted and replaced with an indicator gene. In the presence of wild-type adenovirus as a helper, this DNA was packaged and propagated as transducing viral particles. After several rounds of amplification, the titer of the recombinant virus reached at least 4 x 10(6) transducing particles per ml. The recombinant virus could be partially purified from the helper virus by CsCl equilibrium density-gradient centrifugation. The structure of the recombinant virus around the marker gene remained intact after serial propagation, while the pBR sequence inserted in the E1 region was deleted from the recombinant virus. Our results suggest that it should be possible to develop a helper-dependent adenoviral vector, which does not encode any viral proteins, as an alternative to the currently available adenoviral vector systems.
Resumo:
This dissertation introduces an approach to generate tests to test fail-safe behavior for web applications. We apply the approach to a commercial web application. We build models for both behavioral and mitigation requirements. We create mitigation tests from an existing functional black box test suite by determining failure type and points of failure in the test suite and weaving required mitigation based on weaving rules to generate a test suite that tests proper mitigation of failures. A genetic algorithm (GA) is used to determine points of failure and type of failure that needs to be tested. Mitigation test paths are woven into the behavioral test at the point of failure based on failure specific weaving rules. A simulator was developed to evaluate choice of parameters for the genetic algorithm. We showed how to tune the fitness function and performed tuning experiments for GA to determine what values to use for exploration weight and prospecting weight. We found that higher defect densities make prospecting and mining more successful, while lower mitigation defect densities need more exploration. We compare efficiency and effectiveness of the approach. First, the GA approach is compared to random selection. The results show that the GA performance was better than random selection and that the approach was robust when the search space increased. Second, we compare the GA against four coverage criteria. The results of comparison show that test requirements generated by a genetic algorithm (GA) are more efficient than three of the four coverage criteria for large search spaces. They are equally effective. For small search spaces, the genetic algorithm is less effective than three of the four coverage criteria. The fourth coverage criteria is too weak and unable to find all defects in almost all cases. We also present a large case study of a mortgage system at one of our industrial partners and show how we formalize the approach. We evaluate the use of a GA to create test requirements. The evaluation includes choice of initial population, multiplicity of runs and a discussion of the cost of evaluating fitness. Finally, we build a selective regression testing approach based on types of changes (add, delete, or modify) that could occur in the behavioral model, the fault model, the mitigation models, the weaving rules, and the state-event matrix. We provide a systematic method by showing the formalization steps for each type of change to the various models.
Resumo:
Summary. Energy saving has been a stated policy objective of the EU since the 1970s. Presently, the 2020 target is a 20% reduction of EU energy consumption in comparison with current projections for 2020. This is one of the headline targets of the European Energy Strategy 2020 but efforts to achieve it remain slow and insufficient. The aim of this paper is to understand why this is happening. Firstly, this paper examines the reasons why public measures promoting energy efficiency are needed and what form these measures should optimally take (§ 1). Fortunately, over the last 20 years, much research has been done into the famous ‘energy efficiency gap’ (or ‘the energy efficiency paradox’), even if more remains to be done. Multiple explanations have been given: market failures, modelling flaws and behavioural obstacles. Each encompasses many complex aspects. Several types of instruments can be adopted to encourage energy efficiency: measures guaranteeing the correct pricing of energy are preferred, followed by taxes or tradable white certificates which in turn are preferred to standards or subsidies. Information programmes are also necessary. Secondly, the paper analyzes the evolution of the different programmes from 2000 onwards (§ 2). This reveals the extreme complexity of the subject. It deals with quite diverse topics: buildings, appliances, public sector, industry and transport. The market for energy efficiency is as diffuse as energy consumption patterns themselves. It is composed of many market actors who demand more efficient provision of energy services, and that suppliers of the necessary goods and know-how deliver this greater efficiency. Consumers in this market include individuals, businesses and governments, and market activities cover all energy-consuming sectors of the economy. Additionally, energy efficiency is the perfect example of a shared competence between the EU and the Member States. Lastly, the legal framework has steadily increased in complexity, and despite the successive energy efficiency programmes used to build this framework, it has become clear that the gap between the target and the results remains. The paper then examines whether the 2012/27/EU Directive adopted to improve the situation could bring better results. It briefly describes the content of this framework Directive, which accompanies and implements the latest energy efficiency programme (§ 3). Although the Directive is technically complex and maintains nonbinding energy efficiency targets, it certainly represents an improvement in several aspects. However, it is also saddled with a multiplicity of exemption clauses and interpretative documents (with no binding value) which weaken its provisions. Furthermore, alone, it will allow the achievement of only about 17.7% of final energy savings by 2020. The implementation process, which is essential, also remains fairly weak. The paper also gives a glimpse of the various EU instruments for financing energy efficiency projects (§ 4). Though useful, they do not indicate a strong priority. Fourthly, the paper tries to analyze the EU’s limited progress so far and gather a few suggestions for improvement. One thing seems to remain useful: targets which can be defined in various ways (§ 5). Basically, all this indicates that the EU energy efficiency strategy has so far failed to reach its targets, lacks coherence and remains ambiguous. In the new Commission’s proposals of 22 January 2014 – intended to define a new climate/energy package in the period from 2020 to 2030 – the approach to energy efficiency remains unclear. This is regrettable. Energy efficiency is the only instrument which allows the EU to reach simultaneously its three targets: sustainability, competitiveness and security. The final conclusion appears thus paradoxical. On the one hand, all existing studies indicate that the decarbonization of the EU economy will be absolutely impossible without some very serious improvements in energy efficiency. On the other hand, in reality energy efficiency has always been treated as a second zone priority. It is imperative to eliminate this contradiction.
Resumo:
Contains 83 glees and madrigals for various combinations of voices, with optional piano accompaniment.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The goal of this paper is to study the multiplicity of positive solutions of a class of quasilinear elliptic equations. Based on the mountain pass theorems and sub-and supersolutions argument for p-Laplacian operators, under suitable conditions on nonlinearity f (x, s), we show the following problem: -Delta(p)u = lambda f(x,u) in Omega, u/(partial derivative Omega) = 0, where Omega is a bounded open subset of R-N, N >= 2, with smooth boundary, lambda is a positive parameter and Delta(p) is the p-Laplacian operator with p > 1, possesses at least two positive solutions for large lambda.