916 resultados para Multilevel Linear Models
Resumo:
A variety of lattice discretisations of continuum actions has been considered, usually requiring the correct classical continuum limit. Here we discuss “weird” lattice formulations without that property, namely lattice actions that are invariant under most continuous deformations of the field configuration, in one version even without any coupling constants. It turns out that universality is powerful enough to still provide the correct quantum continuum limit, despite the absence of a classical limit, or a perturbative expansion. We demonstrate this for a set of O(N) models (or non-linear σ-models). Amazingly, such “weird” lattice actions are not only in the right universality class, but some of them even have practical benefits, in particular an excellent scaling behaviour.
Resumo:
Coronary heart disease remains the leading cause of death in the United States and increased blood cholesterol level has been found to be a major risk factor with roots in childhood. Tracking of cholesterol, i.e., the tendency to maintain a particular cholesterol level relative to the rest of the population, and variability in blood lipid levels with increase in age have implications for cholesterol screening and assessment of lipid levels in children for possible prevention of further rise to prevent adulthood heart disease. In this study the pattern of change in plasma lipids, over time, and their tracking were investigated. Also, within-person variance and retest reliability defined as the square root of within-person variance for plasma total cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides and their relation to age, sex and body mass index among participants from age 8 to 18 years were investigated. ^ In Project HeartBeat!, 678 healthy children aged 8, 11 and 14 years at baseline were enrolled and examined at 4-monthly intervals for up to 4 years. We examined the relationship between repeated observations by Pearson's correlations. Age- and sex-specific quintiles were calculated and the probability of participants to remain in the uppermost quintile of their respective distribution was evaluated with life table methods. Plasma total cholesterol, HDL-C and LDL-C at baseline were strongly and significantly correlated with measurements at subsequent visits across the sex and age groups. Plasma triglyceride at baseline was also significantly correlated with subsequent measurements but less strongly than was the case for other plasma lipids. The probability to remain in the upper quintile was also high (60 to 70%) for plasma total cholesterol, HDL-C and LDL-C. ^ We used a mixed longitudinal, or synthetic cohort design with continuous observations from age 8 to 18 years to estimate within person variance of plasma total cholesterol, HDL-C, LDL-C and triglycerides. A total of 5809 measurements were available for both cholesterol and triglycerides. A multilevel linear model was used. Within-person variance among repeated measures over up to four years of follow-up was estimated for total cholesterol, HDL-C, LDL-C and triglycerides separately. The relationship of within-person and inter-individual variance with age, sex, and body mass index was evaluated. Likelihood ratio tests were conducted by calculating the deviation of −2log (likelihood) within the basic model and alternative models. The square root of within-person variance provided the retest reliability (within person standard deviation) for plasma total cholesterol, HDL-C, LDL-C and triglycerides. We found 13.6 percent retest reliability for plasma cholesterol, 6.1 percent for HDL-cholesterol, 11.9 percent for LDL-cholesterol and 32.4 percent for triglycerides. Retest reliability of plasma lipids was significantly related with age and body mass index. It increased with increase in body mass index and age. These findings have implications for screening guidelines, as participants in the uppermost quintile tended to maintain their status in each of the age groups during a four-year follow-up. The magnitude of within-person variability of plasma lipids influences the ability to classify children into risk categories recommended by the National Cholesterol Education Program. ^
Resumo:
In recent years, disaster preparedness through assessment of medical and special needs persons (MSNP) has taken a center place in public eye in effect of frequent natural disasters such as hurricanes, storm surge or tsunami due to climate change and increased human activity on our planet. Statistical methods complex survey design and analysis have equally gained significance as a consequence. However, there exist many challenges still, to infer such assessments over the target population for policy level advocacy and implementation. ^ Objective. This study discusses the use of some of the statistical methods for disaster preparedness and medical needs assessment to facilitate local and state governments for its policy level decision making and logistic support to avoid any loss of life and property in future calamities. ^ Methods. In order to obtain precise and unbiased estimates for Medical Special Needs Persons (MSNP) and disaster preparedness for evacuation in Rio Grande Valley (RGV) of Texas, a stratified and cluster-randomized multi-stage sampling design was implemented. US School of Public Health, Brownsville surveyed 3088 households in three counties namely Cameron, Hidalgo, and Willacy. Multiple statistical methods were implemented and estimates were obtained taking into count probability of selection and clustering effects. Statistical methods for data analysis discussed were Multivariate Linear Regression (MLR), Survey Linear Regression (Svy-Reg), Generalized Estimation Equation (GEE) and Multilevel Mixed Models (MLM) all with and without sampling weights. ^ Results. Estimated population for RGV was 1,146,796. There were 51.5% female, 90% Hispanic, 73% married, 56% unemployed and 37% with their personal transport. 40% people attained education up to elementary school, another 42% reaching high school and only 18% went to college. Median household income is less than $15,000/year. MSNP estimated to be 44,196 (3.98%) [95% CI: 39,029; 51,123]. All statistical models are in concordance with MSNP estimates ranging from 44,000 to 48,000. MSNP estimates for statistical methods are: MLR (47,707; 95% CI: 42,462; 52,999), MLR with weights (45,882; 95% CI: 39,792; 51,972), Bootstrap Regression (47,730; 95% CI: 41,629; 53,785), GEE (47,649; 95% CI: 41,629; 53,670), GEE with weights (45,076; 95% CI: 39,029; 51,123), Svy-Reg (44,196; 95% CI: 40,004; 48,390) and MLM (46,513; 95% CI: 39,869; 53,157). ^ Conclusion. RGV is a flood zone, most susceptible to hurricanes and other natural disasters. People in the region are mostly Hispanic, under-educated with least income levels in the U.S. In case of any disaster people in large are incapacitated with only 37% have their personal transport to take care of MSNP. Local and state government’s intervention in terms of planning, preparation and support for evacuation is necessary in any such disaster to avoid loss of precious human life. ^ Key words: Complex Surveys, statistical methods, multilevel models, cluster randomized, sampling weights, raking, survey regression, generalized estimation equations (GEE), random effects, Intracluster correlation coefficient (ICC).^
Resumo:
The visual responses of neurons in the cerebral cortex were first adequately characterized in the 1960s by D. H. Hubel and T. N. Wiesel [(1962) J. Physiol. (London) 160, 106-154; (1968) J. Physiol. (London) 195, 215-243] using qualitative analyses based on simple geometric visual targets. Over the past 30 years, it has become common to consider the properties of these neurons by attempting to make formal descriptions of these transformations they execute on the visual image. Most such models have their roots in linear-systems approaches pioneered in the retina by C. Enroth-Cugell and J. R. Robson [(1966) J. Physiol. (London) 187, 517-552], but it is clear that purely linear models of cortical neurons are inadequate. We present two related models: one designed to account for the responses of simple cells in primary visual cortex (V1) and one designed to account for the responses of pattern direction selective cells in MT (or V5), an extrastriate visual area thought to be involved in the analysis of visual motion. These models share a common structure that operates in the same way on different kinds of input, and instantiate the widely held view that computational strategies are similar throughout the cerebral cortex. Implementations of these models for Macintosh microcomputers are available and can be used to explore the models' properties.
Resumo:
Background: Spain’s financial crisis has been characterized by an increase in unemployment. This increase could have produced an increase in deaths of women due to intimate partner-related femicides (IPF). This study aims to determine whether the increase in unemployment among both sexes in different regions in Spain is related to an increase in the rates of IPF during the current financial crisis period. Methods: An ecological longitudinal study was carried out in Spain’s 17 regions. Two study periods were defined: pre-crisis period (2005–2007) and crisis period (2008–2013). IPF rates adjusted by age and unemployment rates for men and women were calculated. We fitted multilevel linear regression models in which observations at level 1 were nested within regions according to a repeated measurements design. Results: Rates of unemployment have progressively increased in Spain, rising above 20 % from 2008 to 2013 in some regions. IPF rates decreased in some regions during crisis period with respect to pre-crisis period. The multilevel analysis does not support the existence of a significant relationship between the increase in unemployment in men and women and the decrease in IPF since 2008. Discussion: The increase in unemployment in men and women in Spain does not appear to have an effect on IPF. The results of the multilevel analysis discard the hypothesis that the increase in the rates of unemployment in women and men are related to an increase in IPF rates. Conclusions: The decline in IPF since 2008 might be interpreted as the result of exposure to other factors such as the lower frequency of divorces in recent years or the medium term effects of the integral protection measures of the law on gender violence that began in 2005.
Resumo:
Background - The binding between peptide epitopes and major histocompatibility complex proteins (MHCs) is an important event in the cellular immune response. Accurate prediction of the binding between short peptides and the MHC molecules has long been a principal challenge for immunoinformatics. Recently, the modeling of MHC-peptide binding has come to emphasize quantitative predictions: instead of categorizing peptides as "binders" or "non-binders" or as "strong binders" and "weak binders", recent methods seek to make predictions about precise binding affinities. Results - We developed a quantitative support vector machine regression (SVR) approach, called SVRMHC, to model peptide-MHC binding affinities. As a non-linear method, SVRMHC was able to generate models that out-performed existing linear models, such as the "additive method". By adopting a new "11-factor encoding" scheme, SVRMHC takes into account similarities in the physicochemical properties of the amino acids constituting the input peptides. When applied to MHC-peptide binding data for three mouse class I MHC alleles, the SVRMHC models produced more accurate predictions than those produced previously. Furthermore, comparisons based on Receiver Operating Characteristic (ROC) analysis indicated that SVRMHC was able to out-perform several prominent methods in identifying strongly binding peptides. Conclusion - As a method with demonstrated performance in the quantitative modeling of MHC-peptide binding and in identifying strong binders, SVRMHC is a promising immunoinformatics tool with not inconsiderable future potential.
Resumo:
* This paper was made according to the program No 14 of fundamental scientific research of the Presidium of the Russian Academy of Sciences, the project "Intellectual Systems Based on Multilevel Domain Models".
Resumo:
Prognostic procedures can be based on ranked linear models. Ranked regression type models are designed on the basis of feature vectors combined with set of relations defined on selected pairs of these vectors. Feature vectors are composed of numerical results of measurements on particular objects or events. Ranked relations defined on selected pairs of feature vectors represent additional knowledge and can reflect experts' opinion about considered objects. Ranked models have the form of linear transformations of feature vectors on a line which preserve a given set of relations in the best manner possible. Ranked models can be designed through the minimization of a special type of convex and piecewise linear (CPL) criterion functions. Some sets of ranked relations cannot be well represented by one ranked model. Decomposition of global model into a family of local ranked models could improve representation. A procedures of ranked models decomposition is described in this paper.
Resumo:
2000 Mathematics Subject Classification: 62H12, 62P99
Resumo:
Analysis of risk measures associated with price series data movements and its predictions are of strategic importance in the financial markets as well as to policy makers in particular for short- and longterm planning for setting up economic growth targets. For example, oilprice risk-management focuses primarily on when and how an organization can best prevent the costly exposure to price risk. Value-at-Risk (VaR) is the commonly practised instrument to measure risk and is evaluated by analysing the negative/positive tail of the probability distributions of the returns (profit or loss). In modelling applications, least-squares estimation (LSE)-based linear regression models are often employed for modeling and analyzing correlated data. These linear models are optimal and perform relatively well under conditions such as errors following normal or approximately normal distributions, being free of large size outliers and satisfying the Gauss-Markov assumptions. However, often in practical situations, the LSE-based linear regression models fail to provide optimal results, for instance, in non-Gaussian situations especially when the errors follow distributions with fat tails and error terms possess a finite variance. This is the situation in case of risk analysis which involves analyzing tail distributions. Thus, applications of the LSE-based regression models may be questioned for appropriateness and may have limited applicability. We have carried out the risk analysis of Iranian crude oil price data based on the Lp-norm regression models and have noted that the LSE-based models do not always perform the best. We discuss results from the L1, L2 and L∞-norm based linear regression models. ACM Computing Classification System (1998): B.1.2, F.1.3, F.2.3, G.3, J.2.
Resumo:
Background There is substantial evidence from high income countries that neighbourhoods have an influence on health independent of individual characteristics. However, neighbourhood characteristics are rarely taken into account in the analysis of urban health studies from developing countries. Informal urban neighbourhoods are home to about half of the population in Aleppo, the second largest city in Syria (population>2.5 million). This study aimed to examine the influence of neighbourhood socioeconomic status (SES) and formality status on self-rated health (SRH) of adult men and women residing in formal and informal urban neighbourhoods in Aleppo. Methods The study used data from 2038 survey respondents to the Aleppo Household Survey, 2004 (age 18–65 years, 54.8% women, response rate 86%). Respondents were nested in 45 neighbourhoods. Five individual-level SES measures, namely education, employment, car ownership, item ownership and household density, were aggregated to the level of neighbourhood. Multilevel regression models were used to investigate associations. Results We did not find evidence of important SRH variation between neighbourhoods. Neighbourhood average of household item ownership was associated with a greater likelihood of reporting excellent SRH in women; odds ratio (OR) for an increase of one item on average was 2.3 (95% CI 1.3-4.4 (versus poor SRH)) and 1.7 (95% CI 1.1-2.5 (versus normal SRH)), adjusted for individual characteristics and neighbourhood formality. After controlling for individual and neighbourhood SES measures, women living in informal neighbourhoods were less likely to report poor SRH than women living in formal neighbourhoods (OR= 0.4; 95% CI (0.2- 0.8) (versus poor SRH) and OR=0.5; 95%; CI (0.3-0.9) (versus normal SRH). Conclusions Findings support evidence from high income countries that certain characteristic of neighbourhoods affect men and women in different ways. Further research from similar urban settings in developing countries is needed to understand the mechanisms by which informal neighbourhoods influence women’s health.
Resumo:
Undoubtedly, statistics has become one of the most important subjects in the modern world, where its applications are ubiquitous. The importance of statistics is not limited to statisticians, but also impacts upon non-statisticians who have to use statistics within their own disciplines. Several studies have indicated that most of the academic departments around the world have realized the importance of statistics to non-specialist students. Therefore, the number of students enrolled in statistics courses has vastly increased, coming from a variety of disciplines. Consequently, research within the scope of statistics education has been able to develop throughout the last few years. One important issue is how statistics is best taught to, and learned by, non-specialist students. This issue is controlled by several factors that affect the learning and teaching of statistics to non-specialist students, such as the use of technology, the role of the English language (especially for those whose first language is not English), the effectiveness of statistics teachers and their approach towards teaching statistics courses, students’ motivation to learn statistics and the relevance of statistics courses to the main subjects of non-specialist students. Several studies, focused on aspects of learning and teaching statistics, have been conducted in different countries around the world, particularly in Western countries. Conversely, the situation in Arab countries, especially in Saudi Arabia, is different; here, there is very little research in this scope, and what there is does not meet the needs of those countries towards the development of learning and teaching statistics to non-specialist students. This research was instituted in order to develop the field of statistics education. The purpose of this mixed methods study was to generate new insights into this subject by investigating how statistics courses are currently taught to non-specialist students in Saudi universities. Hence, this study will contribute towards filling the knowledge gap that exists in Saudi Arabia. This study used multiple data collection approaches, including questionnaire surveys from 1053 non-specialist students who had completed at least one statistics course in different colleges of the universities in Saudi Arabia. These surveys were followed up with qualitative data collected via semi-structured interviews with 16 teachers of statistics from colleges within all six universities where statistics is taught to non-specialist students in Saudi Arabia’s Eastern Region. The data from questionnaires included several types, so different techniques were used in analysis. Descriptive statistics were used to identify the demographic characteristics of the participants. The chi-square test was used to determine associations between variables. Based on the main issues that are raised from literature review, the questions (items scales) were grouped and five key groups of questions were obtained which are: 1) Effectiveness of Teachers; 2) English Language; 3) Relevance of Course; 4) Student Engagement; 5) Using Technology. Exploratory data analysis was used to explore these issues in more detail. Furthermore, with the existence of clustering in the data (students within departments within colleges, within universities), multilevel generalized linear models for dichotomous analysis have been used to clarify the effects of clustering at those levels. Factor analysis was conducted confirming the dimension reduction of variables (items scales). The data from teachers’ interviews were analysed on an individual basis. The responses were assigned to one of the eight themes that emerged from within the data: 1) the lack of students’ motivation to learn statistics; 2) students' participation; 3) students’ assessment; 4) the effective use of technology; 5) the level of previous mathematical and statistical skills of non-specialist students; 6) the English language ability of non-specialist students; 7) the need for extra time for teaching and learning statistics; and 8) the role of administrators. All the data from students and teachers indicated that the situation of learning and teaching statistics to non-specialist students in Saudi universities needs to be improved in order to meet the needs of those students. The findings of this study suggested a weakness in the use of statistical software applications in these courses. This study showed that there is lack of application of technology such as statistical software programs in these courses, which would allow non-specialist students to consolidate their knowledge. The results also indicated that English language is considered one of the main challenges in learning and teaching statistics, particularly in institutions where English is not used as the main language. Moreover, the weakness of mathematical skills of students is considered another major challenge. Additionally, the results indicated that there was a need to tailor statistics courses to the needs of non-specialist students based on their main subjects. The findings indicate that statistics teachers need to choose appropriate methods when teaching statistics courses.
Resumo:
BACKGROUND: Regional differences in physician supply can be found in many health care systems, regardless of their organizational and financial structure. A theoretical model is developed for the physicians' decision on office allocation, covering demand-side factors and a consumption time function. METHODS: To test the propositions following the theoretical model, generalized linear models were estimated to explain differences in 412 German districts. Various factors found in the literature were included to control for physicians' regional preferences. RESULTS: Evidence in favor of the first three propositions of the theoretical model could be found. Specialists show a stronger association to higher populated districts than GPs. Although indicators for regional preferences are significantly correlated with physician density, their coefficients are not as high as population density. CONCLUSIONS: If regional disparities should be addressed by political actions, the focus should be to counteract those parameters representing physicians' preferences in over- and undersupplied regions.
Resumo:
Résumé : Problématique : Puisque les enfants de moins de cinq ans passent environ 29 heures par semaine dans les milieux de garde et qu’ils apprennent en observant et en imitant les autres, les éducateurs et les pairs peuvent être des modèles importants dans l’apprentissage de saines habitudes de vie. Les objectifs étaient d’analyser les associations entre 1) les pratiques des éducateurs et l’apport alimentaire, 2) l’activité physique (AP) des enfants de trois à cinq ans dans les milieux de garde, 3) le degré d’influence des pairs sur l’apport alimentaire, et 4) l’AP des enfants de trois à cinq ans. Méthodes : Les associations entre les pratiques des éducateurs et les comportements liés à l’apport alimentaire et l’AP des enfants ont été étudiées à l’aide d’une étude transversale, menée auprès de 723 enfants de trois à cinq ans de 51 milieux de garde en Saskatchewan et au Nouveau-Brunswick à l’automne 2013 et 2014. Le degré d’influence des pairs sur l’apport alimentaire et l’AP des enfants a été étudié à l’aide d’une étude longitudinale, menée auprès de 238 enfants de trois à cinq ans au début et à la fin des années scolaires 2013-2014 et 2014-2015. L’AP des enfants a été mesurée à l’aide d’accéléromètres, et l’apport alimentaire a été mesuré à l’aide d’une analyse de consommation par pesée et photographiée. Une grille d’observation de l’environnement a permis de mesurer les pratiques des éducateurs en milieu de garde. Des régressions linéaires multiniveaux ont répondu aux quatre objectifs de l’étude. Résultats : Le modelage est positivement associé à l’apport en sucre (p=0,026) et l’éducation alimentaire est négativement associée à l’apport en calories (p=0,026) et en fibres (p=0,044). Ne pas utiliser de récompenses alimentaires est négativement associée à l’apport en gras (p=0,049). Aucune pratique n’est associée à l’AP des enfants. Plus l’écart entre l’apport alimentaire et l’AP des enfants et ceux de leurs pairs est grand au début de l’année, plus les enfants voient leur apport alimentaire et leur AP changer, se rapprochant de la moyenne de leurs pairs neuf mois plus tard (p<0,05). Conclusion : Les éducateurs et les pairs jouent un rôle important dans l’adoption d’habitudes alimentaires saines et d’AP chez les enfants de trois à cinq ans dans les milieux de garde. L’environnement social est donc important à considérer dans les interventions de promotion d’habitudes de vie saine dans les milieux de garde.
Resumo:
Species occurrence and abundance models are important tools that can be used in biodiversity conservation, and can be applied to predict or plan actions needed to mitigate the environmental impacts of hydropower dams. In this study our objectives were: (i) to model the occurrence and abundance of threatened plant species, (ii) to verify the relationship between predicted occurrence and true abundance, and (iii) to assess whether models based on abundance are more effective in predicting species occurrence than those based on presence–absence data. Individual representatives of nine species were counted within 388 randomly georeferenced plots (10 m × 50 m) around the Barra Grande hydropower dam reservoir in southern Brazil. We modelled their relationship with 15 environmental variables using both occurrence (Generalised Linear Models) and abundance data (Hurdle and Zero-Inflated models). Overall, occurrence models were more accurate than abundance models. For all species, observed abundance was significantly, although not strongly, correlated with the probability of occurrence. This correlation lost significance when zero-abundance (absence) sites were excluded from analysis, but only when this entailed a substantial drop in sample size. The same occurred when analysing relationships between abundance and probability of occurrence from previously published studies on a range of different species, suggesting that future studies could potentially use probability of occurrence as an approximate indicator of abundance when the latter is not possible to obtain. This possibility might, however, depend on life history traits of the species in question, with some traits favouring a relationship between occurrence and abundance. Reconstructing species abundance patterns from occurrence could be an important tool for conservation planning and the management of threatened species, allowing scientists to indicate the best areas for collection and reintroduction of plant germplasm or choose conservation areas most likely to maintain viable populations.