792 resultados para Multilane highways.
Resumo:
A brief history of Iowa highways.
Resumo:
The highway express freight transportation (HEFT) is a new transportation organization form separated from the common freight transportation with economic development and incessant adjustment of highway transportation structure in China. At present, the phenomenon of inadaptability still exists in the HEFT system of China, from foundation structure like highways, parking lots and stations to transportation equipments and transportation organizing. In order to develop the HEFT system more rationally and effectively, we should start with the structure of the system, conform the resources existing, and consummate the freight transport system. In due course, relevant policies and measures to supervise, lead and support are necessary and important. This paper analyzes the existing problems of HEFT system in our country, based on its characteristics, development situation and adaptability, and presents the policy and measures of promoting and leading the development of the HEFT system.
Resumo:
In 2004, with the increasing overloading restriction requirements of society in Anhui, a provincial comprehensive overloading transportation survey has been developed to take evaluations on overloading actuality and enforcement efficiency with the support of the World Bank. A total of six site surveys were conducted at Hefei, Fuyang, Luan, Wuhu, Huainan and Huangshan Areas with four main contents respectively: traffic volume, axle load, freight information and registration information. Via statistical analysis on the survey data, conclusions were gained that: vehicle overloading are very universal and serious problems at arterial highways in Anhui now. The traffic loads have far exceeded the designed endure capacity of highways and have caused prevalent premature pavement damage, especially for rigid pavement. The overloading trucks are unimpeded engaged in highway freight transportation actually due to the disordered overloading enforcement strategies and the deficient inspecting technologies.
Resumo:
The current policy decision making in Australia regarding non-health public investments (for example, transport/housing/social welfare programmes) does not quantify health benefits and costs systematically. To address this knowledge gap, this study proposes an economic model for quantifying health impacts of public policies in terms of dollar value. The intention is to enable policy-makers in conducting economic evaluation of health effects of non-health policies and in implementing policies those reduce health inequalities as well as enhance positive health gains of the target population. Health Impact Assessment (HIA) provides an appropriate framework for this study since HIA assesses the beneficial and adverse effects of a programme/policy on public health and on health inequalities through the distribution of those effects. However, HIA usually tries to influence the decision making process using its scientific findings, mostly epidemiological and toxicological evidence. In reality, this evidence can not establish causal links between policy and health impacts since it can not explain how an individual or a community reacts to changing circumstances. The proposed economic model addresses this health-policy linkage using a consumer choice approach that can explain changes in group and individual behaviour in a given economic set up. The economic model suggested in this paper links epidemiological findings with economic analysis to estimate the health costs and benefits of public investment policies. That is, estimating dollar impacts when health status of the exposed population group changes by public programmes – for example, transport initiatives to reduce congestion by building new roads/ highways/ tunnels etc. or by imposing congestion taxes. For policy evaluation purposes, the model is incorporated in the HIA framework by establishing association among identified factors, which drive changes in the behaviour of target population group and in turn, in the health outcomes. The economic variables identified to estimate the health inequality and health costs are levels of income, unemployment, education, age groups, disadvantaged population groups, mortality/morbidity etc. However, though the model validation using case studies and/or available database from Australian non-health policy (say, transport) arena is in the future tasks agenda, it is beyond the scope of this current paper.
Analytical modeling and sensitivity analysis for travel time estimation on signalized urban networks
Resumo:
This paper presents a model for estimation of average travel time and its variability on signalized urban networks using cumulative plots. The plots are generated based on the availability of data: a) case-D, for detector data only; b) case-DS, for detector data and signal timings; and c) case-DSS, for detector data, signal timings and saturation flow rate. The performance of the model for different degrees of saturation and different detector detection intervals is consistent for case-DSS and case-DS whereas, for case-D the performance is inconsistent. The sensitivity analysis of the model for case-D indicates that it is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.
Resumo:
This paper presents a methodology for estimation of average travel time on signalized urban networks by integrating cumulative plots and probe data. This integration aims to reduce the relative deviations in the cumulative plots due to midlink sources and sinks. During undersaturated traffic conditions, the concept of a virtual probe is introduced, and therefore, accurate travel time can be obtained when a real probe is unavailable. For oversaturated traffic conditions, only one probe per travel time estimation interval—360 s or 3% of vehicles traversing the link as a probe—has the potential to provide accurate travel time.
Resumo:
Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive literature. The majority of safety prediction models are estimated using roadway segment and intersection (microscale) data, while more recently efforts have been undertaken to predict safety at the planning level (macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors known to affect safety in fundamental ways. Environmental variables, in particular variables attempting to capture the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather variables have been included, historical averages rather than actual weather conditions during which crashes are observed have been used. Without the inclusion of weather related variables researchers have had difficulty explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, highways, etc.) As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction models. These models make use of socio-economic, demographic, and roadway variables for predicting planning level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been problematic during the development of planning level safety prediction models. More specifically, without weather related variables there is an insufficient set of variables for explaining safety differences across regions and states. Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy. This paper summarizes the results of an effort to include weather related variables, particularly various measures of rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these variables reduced the portion of the model explained by the constant in the base models without weather variables. Rain tends to diminish safety, as expected, in fairly complex ways, depending on rain frequency and intensity.
Resumo:
A study was done to develop macrolevel crash prediction models that can be used to understand and identify effective countermeasures for improving signalized highway intersections and multilane stop-controlled highway intersections in rural areas. Poisson and negative binomial regression models were fit to intersection crash data from Georgia, California, and Michigan. To assess the suitability of the models, several goodness-of-fit measures were computed. The statistical models were then used to shed light on the relationships between crash occurrence and traffic and geometric features of the rural signalized intersections. The results revealed that traffic flow variables significantly affected the overall safety performance of the intersections regardless of intersection type and that the geometric features of intersections varied across intersection type and also influenced crash type.
Resumo:
Overloaded truck traffic is a significant problem on highways around the world. Developing countries in particular, overloaded truck traffic causes large amounts of unexpected expenditure in terms of road maintenance because of premature pavement damage. Overloaded truck traffic is a common phenomenon in developing countries, because of inefficient road management and monitoring systems. According to the available literature, many developing countries are facing the same problem, which is economic loss caused by the existence of overloaded trucks in the traffic stream. This paper summarizes the available literature, news reports, journal articles and traffic research regarding overloaded traffic. It examines the issue of overloading and the strategies and legislation used in developed countries.
Resumo:
The Texas Transportation Commission (“the Commission”) is responsible for planning and making policies for the location, construction, and maintenance of a comprehensive system of highways and public roads in Texas. In order for the Commission to carry out its legislative mandate, the Texas Constitution requires that most revenue generated by motor vehicle registration fees and motor fuel taxes be used for constructing and maintaining public roadways and other designated purposes. The Texas Department of Transportation (TxDOT) assists the Commission in executing state transportation policy. It is the responsibility of the legislature to appropriate money for TxDOT’s operation and maintenance expenses. All money authorized to be appropriated for TxDOT’s operations must come from the State Highway Fund (also known as Fund 6, Fund 006, or Fund 0006). The Commission can then use the balance in the fund to fulfill its responsibilities. However, the value of the revenue received in Fund 6 is not keeping pace with growing demand for transportation infrastructure in Texas. Additionally, diversion of revenue to nontransportation uses now exceeds $600 million per year. As shown in Figure 1.1, revenues and expenditures of the State Highway Fund per vehicle mile traveled (VMT) in Texas have remained almost flat since 1993. In the meantime, construction cost inflation has gone up more than 100%, effectively halving the value of expenditure.
Resumo:
Background: Pregnant women exposed to traffic pollution have an increased risk of negative birth outcomes. We aimed to investigate the size of this risk using a prospective cohort of 970 mothers and newborns in Logan, Queensland. ----- ----- Methods: We examined two measures of traffic: distance to nearest road and number of roads around the home. To examine the effect of distance we used the number of roads around the home in radii from 50 to 500 metres. We examined three road types: freeways, highways and main roads.----- ----- Results: There were no associations with distance to road. A greater number of freeways and main roads around the home were associated with a shorter gestation time. There were no negative impacts on birth weight, birth length or head circumference after adjusting for gestation. The negative effects on gestation were largely due to main roads within 400 metres of the home. For every 10 extra main roads within 400 metres of the home, gestation time was reduced by 1.1% (95% CI: -1.7, -0.5; p-value = 0.001).----- ----- Conclusions: Our results add weight to the association between exposure to traffic and reduced gestation time. This effect may be due to the chemical toxins in traffic pollutants, or because of disturbed sleep due to traffic noise.
Resumo:
Traffic safety in rural highways can be considered as a constant source of concern in many countries. Nowadays, transportation professionals widely use Intelligent Transportation Systems (ITS) to address safety issues. However, compared to metropolitan applications, the rural highway (non-urban) ITS applications are still not well defined. This paper provides a comprehensive review on the existing ITS safety solutions for rural highways. This research is mainly focused on the infrastructure-based control and surveillance ITS technology, such as Crash Prevention and Safety, Road Weather Management and other applications, that is directly related to the reduction of frequency and severity of accidents. The main outcome of this research is the development of a ‘ITS control and surveillance device locating model’ to achieve the maximum safety benefit for rural highways. Using cost and benefits databases of ITS, an integer linear programming method is utilized as an optimization technique to choose the most suitable set of ITS devices. Finally, computational analysis is performed on an existing highway in Iran, to validate the effectiveness of the proposed locating model.
Resumo:
Highway construction works have significant bearings on all aspects of sustainability. As they typically involve huge capital funds, stakeholders tend to place all interests on the financial justifications of the project, especially when embedding sustainability principles and practices may demand significant initial investment. Increasing public awareness and government policies demand that infrastructure projects respond to environmental challenges and people start to realise the negative consequences of not to pursue sustainability. Stakeholders are now keen to identify sustainable alternatives and financial implications of including them on a whole lifecycle basis. Therefore tools that aid the evaluation of investment options, such as provision of environmentally sustainable features in roads and highways, are highly desirable. Life-cycle cost analysis (LCCA) is generally recognised as a valuable approach for investment decision making for construction works. However to date it has limited application because the current LCCA models tend to focus on economic issues alone and are not able to deal with sustainability factors. This paper reports a research on identifying sustainability related factors in highway construction projects, in quantitative and qualitative forms of a multi-criteria analysis. These factors are then incorporated into existing LCCA models to produce a new sustainability based LCCA model with cost elements specific to sustainability measures. This presents highway project stakeholders a practical tool to evaluate investment decisions and reach an optimum balance between financial viability and sustainability deliverables.