978 resultados para Multidrug-resistant organisms
Resumo:
A variety of foods and environmental sources harbor bacteria that are resistant to one or more antimicrobial drugs used in medicine and agriculture. Antibiotic resistance in Escherichia coli is of particular concern because it is the most common Gram-negative pathogen in humans. Hence this study was conducted to determine the antibiotic sensitivity pattern of E. coli isolated from different types of food items collected randomly from twelve localities of Hyderabad, India. A total of 150 samples comprising; vegetable salad, raw egg-surface, raw chicken, unpasteurized milk, and raw meat were processed microbiologically to isolate E. coli and to study their antibiotic susceptibility pattern by the Kirby-Bauer method. The highest percentages of drug resistance in isolates of E. coli were detected from raw chicken (23.3%) followed by vegetable salad (20%), raw meat (13.3%), raw egg-surface (10%) and unpasteurized milk (6.7%). The overall incidence of drug resistant E. coli was 14.7%. A total of six (4%) Extended Spectrum β-Lactamase (ESBL) producers were detected, two each from vegetable salads and raw chicken, and one each from raw egg-surface and raw meat. Multidrug resistant strains of E. coli are a matter of concern as resistance genes are easily transferable to other strains. Pathogen cycling through food is very common and might pose a potential health risk to the consumer. Therefore, in order to avoid this, good hygienic practices are necessary in the abattoirs to prevent contamination of cattle and poultry products with intestinal content as well as forbidding the use of untreated sewage in irrigating vegetables.
Resumo:
The evaluation of workers as potential reservoirs and disseminators of pathogenic bacteria has been described as a strategy for the prevention and control of healthcare-associated infections (HAIs). The aim of this study was to evaluate the presence of Enterobacteriaceae in the oral cavity of workers at an oncology hospital in the Midwest region of Brazil, as well as to characterize the phenotypic profile of the isolates. Saliva samples of 294 workers from the hospital’s healthcare and support teams were collected. Microbiological procedures were performed according to standard techniques. Among the participants, 55 (18.7%) were colonized by Enterobacteriaceae in the oral cavity. A total of 64 bacteria were isolated, including potentially pathogenic species. The most prevalent species was Enterobacter gergoviae (17.2%). The highest rates of resistance were observed for β-lactams, and 48.4% of the isolates were considered multiresistant. Regarding the enterobacteria isolated, the production of ESBL and KPC was negative. Nevertheless, among the 43 isolates of the CESP group, 51.2% were considered AmpC β-lactamase producers by induction, and 48.8% were hyper-producing mutants. The significant prevalence of carriers of Enterobacteriaceae and the phenotypic profile of the isolates represents a concern, especially due to the multiresistance and production of AmpC β-lactamases.
Resumo:
Nursing home-acquired pneumonia (NHAP) is one of the most common infections arising amongst nursing home residents, and its incidence is expected to increase as population ages. The NHAP recommendation for empiric broad-spectrum antibiotic therapy, arising from the concept of healthcare-associated pneumonia, has been challenged by recent studies reporting low rates of multidrug-resistant (MDR) bacteria. This single center study analyzes the results of NHAP patients admitted through the Emergency Department (ED) at a tertiary center during the year 2010. There were 116 cases, male gender corresponded to 34.5 % of patients and median age was 84 years old (IQR 77-90). Comorbidities were present in 69.8 % of cases and 48.3 % of patients had used healthcare services during the previous 90 days. In-hospital mortality rate was 46.6 % and median length-of-stay was 9 days. Severity assessment at the Emergency Department provided CURB65 index score and respective mortality (%) results: zero: n = 0; one: n = 7 (0 %); two: n = 18 (38.9 %); three: n = 26 (38.5 %); four: n = 30 (53.3 %); and five; n = 22 (68.2 %); and sepsis n = 50 (34.0 %), severe sepsis n = 43 (48.8 %) and septic shock n = 22 (72.7 %). Significant risk factors for in-hospital mortality in multivariate analysis were polypnea (p = 0.001), age ≥ 75 years (p = 0.02), and severe sepsis or shock (p = 0.03) at the ED. Microbiological testing in 78.4 % of cases was positive in 15.4 % (n = 15): methicillin-resistant Staphylococcus aureus (26.7 %), Pseudomonas aeruginosa (20.0 %), S. pneumoniae (13.3 %), Escherichia coli (13.3 %), others (26.7 %); the rate of MDR bacteria was 53.3 %. This study reveals high rates of mortality and MDR bacteria among NHAP hospital admissions supporting the use of empirical broad-spectrum antibiotic therapy in these patients.
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
The objective of the present study was to investigate the frequency and risk factors for developing multidrug-resistant tuberculosis in Cabo de Santo Agostinho, PE. This was a prospective study conducted from 2000 to 2003, in which suspected cases were investigated using bacilloscopy and culturing. Out of 232 confirmed cases of tuberculosis, culturing and antibiotic susceptibility tests were performed on 174. Thirty-five of the 174 cultures showed resistance to all drugs. The frequencies of primary and acquired resistance to any drug were 14% and 50% respectively, while the frequencies of primary and acquired multidrug resistance were 8.3% and 40%. Previous tuberculosis treatment and abandonment of treatment were risk factors for drug resistance. The high levels of primary and acquired resistance to the combination of isoniazid and rifampicin contributed towards the difficulties in controlling tuberculosis transmission in the city.
Resumo:
The increased frequency and dissemination of enterobacteria resistant to various antimicrobials is currently worldwide concern. In January 2010, a 94-year-old patient with chronic lymphocytic leukemia was admitted to the University Hospital. This patient died 21 days after hospitalization due to the clinical worsening. Klebsiella pneumoniae producing of extended-spectrum β-lactamases (ESBLs) was isolated of urine culture. This bacterium demonstrated resistance to ceftazidime, ciprofloxacin, levofloxacin, ertapenem and imipenem. Susceptibility to cefoxitin, cefepime, meropenem, colistin and tigecycline. This study reports the first case of infection by Klebsiella pneumoniae carrying the bla kpc gene in the State of Mato Grosso do Sul, Brazil.
Resumo:
Introduction The high prevalence of Klebsiella pneumoniae infections is related to the ability of K. pneumoniae to acquire and disseminate exogenous genes associated with mobile elements, such as R plasmids, transposons and integrons. This study investigated the presence of class 1 integrons in clinical and microbiota isolates of K. pneumoniae belonging to different phylogenetic groups and correlated these results with the antimicrobial resistance profiles of the studied isolates. Methods Of the 51 isolates of K. pneumoniae selected for this study, 29 were from multidrug-resistant clinical isolates, and 22 were from children's microbiota. The susceptibility profile was determined using the disk diffusion method, and class 1 integrons were detected through polymerase chain reaction (PCR). Results The results showed that none of the 22 microbiota isolates carried class 1 integrons. Among the 29 clinical isolates, 19 (65.5%) contained class 1 integrons, and resistance to sulfamethoxazole/trimethoprim was identified in 18 of these isolates (94.7%). Among the K. pneumoniae isolates with class 1 integrons, 47% belonged to the KpI phylogenetic group, and one isolate (14.3%) carrying these genetic elements belonged to the KpIII group. Conclusions The wide variety of detected class 1 integrons supports the presence of high rates of antimicrobial resistance, genetic variability, and rapid dissemination of beta-lactamase genes among K. pneumoniae clinical isolates in recent years in hospitals in Recife-PE, Brazil. The findings of this study indicate that the surveillance of K. pneumoniae integrons in clinical isolates could be useful for monitoring the spread of antibiotic resistance genes in the hospital environment.
Resumo:
Introduction Acinetobacter baumannii has attained an alarming level of resistance to antibacterial drugs. Clinicians are now considering the use of older agents or unorthodox combinations of licensed drugs against multidrug-resistant strains to bridge the current treatment gap. We investigated the in vitro activities of combination treatments that included colistin with vancomycin, norvancomycin or linezolid against multidrug-resistant Acinetobacter baumannii. Methods The fractional inhibitory concentration index and time-kill assays were used to explore the combined effects of colistin with vancomycin, norvancomycin or linezolid against 40 clinical isolates of multidrug-resistant Acinetobacter baumannii. Transmission electron microscopy was performed to evaluate the interactions in response to the combination of colistin and vancomycin. Results The minimum inhibitory concentrations (MICs) of vancomycin and norvancomycin for half of the isolates decreased below the susceptibility break point, and the MIC of linezolid for one isolate was decreased to the blood and epithelial lining fluid concentration using the current dosing regimen. When vancomycin or norvancomycin was combined with subinhibitory doses of colistin, the multidrug-resistant Acinetobacter baumannii test samples were eradicated. Transmission electron microscopy revealed that subinhibitory doses of colistin were able to disrupt the outer membrane, facilitating a disruption of the cell wall and leading to cell lysis. Conclusions Subinhibitory doses of colistin significantly enhanced the antibacterial activity of vancomycin, norvancomycin, and linezolid against multidrug-resistant Acinetobacter baumannii.
Resumo:
INTRODUCTION : Infections caused by Klebsiella pneumoniae carbapenemase (KPC)-producing isolates pose a major worldwide public health problem today. METHODS : A carbapenem-resistant Proteus mirabilis clinical isolate was investigated for plasmid profiles and the occurrence of β-lactamase genes. RESULTS : The isolate exhibited resistance to ertapenem and imipenem and was susceptible to meropenem, polymyxin, and tigecycline. Five plasmids were identified in this isolate. DNA sequencing analysis revealed the presence of bla KPC-2 and bla TEM-1 genes. An additional PCR using plasmid DNA confirmed that bla KPC-2 was present in one of these plasmids. Conclusions: We report the detection of bla KPC-2 in P. mirabilis in Brazil for the first time. This finding highlights the continuous transfer of bla KPC between bacterial genera, which presents a serious challenge to the prevention of infection by multidrug-resistant bacteria.
Resumo:
Tuberculosis (TB) is one of the infectious diseases that contributes most to the morbidity and mortality of millions of people worldwide. Brazil is one of 22 countries that accounts for 80% of the tuberculosis global burden. The highest incidence rates in Brazil occur in the States of Amazonas and Rio de Janeiro. The aim of this study was to describe the temporal distribution of TB in the State of Amazonas. Between 2001 and 2011, 28,198 cases of tuberculosis were reported in Amazonas, distributed among 62 municipalities, with the capital Manaus reporting the highest (68.7%) concentration of cases. Tuberculosis was more prevalent among males (59.3%) aged 15 to 34 years old (45.5%), whose race/color was predominantly pardo (64.7%) and who had pulmonary TB (84.3%). During this period, 81 cases of multidrug-resistant TB were registered, of which the highest concentration was reported from 2008 onward (p = 0.002). The municipalities with the largest numbers of indigenous individuals affected were São Gabriel da Cachoeira (93%), Itamarati (78.1%), and Santa Isabel do Rio Negro (70.1%). The future outlook for this region includes strengthening the TB control at the primary care level, by expanding diagnostic capabilities, access to treatment, research projects developed in collaboration with the Dr. Heitor Vieira Dourado Tropical Medicine Foundation .;Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD).; and financing institutions, such as the project for the expansion of the Clinical Research Center and the creation of a hospital ward for individuals with transmissible respiratory diseases, including TB.
Resumo:
Abstract: New Delhi metallo-beta-lactamase-1 (NDM-1) is a bacterial enzyme that renders the bacteria resistant to a variety of beta-lactam antibiotics. A 20-year-old man was hospitalized several times for surgical treatment and complications caused by a right-sided vestibular schwannoma. Although the patient acquired several multidrug-resistant infections, this study focuses on the NDM-1-producing Acinetobacter spp. infection. As it was resistant to all antimicrobials tested, the medical team developed a 20-day regimen of 750mg/day metronidazole, 2,000,000IU/day polymyxin B, and 100mg/day tigecycline. The treatment was effective, and the patient recovered and was discharged from the hospital.
Resumo:
Abstract: INTRODUCTION: Due to the wide use of tigecycline in the treatment of severe infections caused by multidrug-resistant (MDR) bacteria, clinical resistance to tigecycline has increased in recent years. Here, we investigated the relationship between tigecycline resistance and the expression of efflux pumps. METHODS: Clinical isolates of Acinetobacter baumannii and Klebsiella pneumoniae were consecutively collected from hospitalized patients in three hospitals. The minimum inhibitory concentration (MIC) of tigecycline was determined using the broth microdilution method. Expression levels of efflux pump genes and regulators were examined by quantitative real-time reverse transcription polymerase chain reaction. The correlations between tigecycline MICs and gene expression levels were analyzed. RESULTS: Overall, 1,026 A. baumannii and 725 K. pneumoniae strains were collected. Most strains were isolated from sputum. The tigecycline resistance rate was 13.4% in A. baumannii isolates and 6.5% in K. pneumoniae isolates. Overexpression of AdeABC and AcrAB-TolC efflux systems was observed found in clinical tigecycline-resistant isolates. The tigecycline MIC had a linear relationship with the adeB expression level in A. baumannii isolates, but not with the acrB expression level in K. pneumoniae isolates. There were significant linear trends in the overexpression of ramA as the tigecycline MIC increased in K. pneumoniae isolates. CONCLUSIONS: Tigecycline resistance in A. baumannii and K. pneumoniae was strongly associated with the overexpression of efflux systems. More studies are needed to elucidate whether there are other regulators that affect the expression of adeB in A. baumannii and how ramA affects the expression of acrB in K. pneumoniae.
Resumo:
Abstract: INTRODUCTION Characterization of Mycobacterium tuberculosis (MTB) isolates by DNA fingerprinting has contributed to tuberculosis (TB) control. The aim of this study was to determine the genetic diversity of MTB isolates from Tehran province in Iran. METHODS MTB isolates from 60 Iranian and 10 Afghan TB patients were fingerprinted by standard IS6110-restriction fragment length polymorphism (RFLP) analysis and spoligotyping. RESULTS The copy number of IS6110 ranged from 10-24 per isolate. The isolates were classified into 22 clusters showing ≥ 80% similarity by RFLP analysis. Fourteen multidrug-resistant (MDR) isolates were grouped into 4 IS6110-RFLP clusters, with 10 isolates [71% (95% CI: 45-89%)] in 1 cluster, suggesting a possible epidemiological linkage. Eighteen Iranian isolates showed ≥ 80% similarity with Afghan isolates. There were no strains with identical fingerprints. Spoligotyping of 70 isolates produced 23 distinct patterns. Sixty (85.7%) isolates were grouped into 13 clusters, while the remaining 10 isolates (14.2%) were not clustered. Ural (formerly Haarlem4) (n = 22, 31.4%) was the most common family followed by Central Asian strain (CAS) (n = 18, 25.7%) and T (n = 9, 12.8%) families. Only 1strain was characterized as having the Beijing genotype. Among 60 Iranian and 10 Afghan MTB isolates, 25% (95% CI: 16-37) and 70% (95% CI: 39-89) were categorized as Ural lineage, respectively. CONCLUSIONS A higher prevalence of Ural family MTB isolates among Afghan patients than among Iranian patients suggests the possible transmission of this lineage following the immigration of Afghans to Iran.
Resumo:
Staphylococcus aureus (S. aureus) is a major human pathogen that has acquired resistance to practically all classes of β-lactam antibiotics, being responsible of Multidrug resistant S. aureus (MRSA) associated infections both in healthcare (HA-MRSA) and community settings (CA-MRSA). The emergence of laboratory strains with high-resistance (VRSA) to the last resort antibiotic, vancomycin, is a warning of what is to come in clinical strains. Penicillin binding proteins (PBPs) target β-lactams and are responsible for catalyzing the last steps of synthesis of the main component of cell wall, peptidoglycan. As in Escherichia coli, it is suggested that S. aureus uses a multi-protein complex that carries out cell wall synthesis. In the presence of β-lactams, PBP2A and PBP2 perform a joint action to build the cell wall and allow cell survival. Likewise, PBP2 cooperates with PBP4 in cell wall cross-linking. However, an actual interaction between PBP2 and PBP4 and the location of such interaction has not yet been determined. Therefore, investigation of the existence of a PBP2-PBP4 interaction and its location(s) in vivo is of great interest, as it should provide new insights into the function of the cell wall synthesis machinery in S. aureus. The aim of this work was to develop Split-GFPP7 system to determine interactions between PBP2 and PBP4. GFPP7 was split in a strategic site and fused to proteins of interest. When each GFPP7 fragment, fused to proteins, was expressed alone in staphylococcal cells, no fluorescence was detectable. When GFPP7 fragments fused to different peptidoglycan synthesis (PBP2 and PBP4) or cell division (FtsZ and EzrA) proteins were co-expressed together, fluorescent fusions were localized to the septum. However, further analysis revealed that this positive result is mediated by GFPP7 self-association. We then interpret the results in light of such event and provide insights into ways of improving this system.
Resumo:
OBJECTIVE: To determine the prevalence rates of infections among intensive care unit patients, the predominant infecting organisms, and their resistance patterns. To identify the related factors for intensive care unit-acquired infection and mortality rates. DESIGN: A 1-day point-prevalence study. SETTING:A total of 19 intensive care units at the Hospital das Clínicas - University of São Paulo, School of Medicine (HC-FMUSP), a teaching and tertiary hospital, were eligible to participate in the study. PATIENTS: All patients over 16 years old occupying an intensive care unit bed over a 24-hour period. The 19 intensive care unit s provided 126 patient case reports. MAIN OUTCOME MEASURES: Rates of infection, antimicrobial use, microbiological isolates resistance patterns, potential related factors for intensive care unit-acquired infection, and death rates. RESULTS: A total of 126 patients were studied. Eighty-seven patients (69%) received antimicrobials on the day of study, 72 (57%) for treatment, and 15 (12%) for prophylaxis. Community-acquired infection occurred in 15 patients (20.8%), non- intensive care unit nosocomial infection in 24 (33.3%), and intensive care unit-acquired infection in 22 patients (30.6%). Eleven patients (15.3%) had no defined type. The most frequently reported infections were respiratory (58.5%). The most frequently isolated bacteria were Enterobacteriaceae (33.8%), Pseudomonas aeruginosa (26.4%), and Staphylococcus aureus (16.9%; [100% resistant to methicillin]). Multivariate regression analysis revealed 3 risk factors for intensive care unit-acquired infection: age > 60 years (p = 0.007), use of a nasogastric tube (p = 0.017), and postoperative status (p = 0.017). At the end of 4 weeks, overall mortality was 28.8%. Patients with infection had a mortality rate of 34.7%. There was no difference between mortality rates for infected and noninfected patients (p=0.088). CONCLUSION: The rate of nosocomial infection is high in intensive care unit patients, especially for respiratory infections. The predominant bacteria were Enterobacteriaceae, Pseudomonas aeruginosa, and Staphylococcus aureus (resistant organisms). Factors such as nasogastric intubation, postoperative status, and age ³60 years were significantly associated with infection. This study documents the clinical impression that prevalence rates of intensive care unit-acquired infections are high and suggests that preventive measures are important for reducing the occurrence of infection in critically ill patients.