918 resultados para Multicast Packing Problem. Multiobjective Optimization. Network Optimization. Multicast
Resumo:
To comply with natural gas demand growth patterns and Europe´s import dependency, the gas industry needs to organize an efficient upstream infrastructure. The best location of Gas Supply Units – GSUs and the alternative transportation mode – by phisical or virtual pipelines, are the key of a successful industry. In this work we study the optimal location of GSUs, as well as determining the most efficient allocation from gas loads to sources, selecting the best transportation mode, observing specific technical restrictions and minimizing system total costs. For the location of GSUs on system we use the P-median problem, for assigning gas demands nodes to source facilities we use the classical transportation problem. The developed model is an optimisation-based approach, based on a Lagrangean heuristic, using Lagrangean relaxation for P-median problems – Simple Lagrangean Heuristic. The solution of this heuristic can be improved by adding a local search procedure - the Lagrangean Reallocation Heuristic. These two heuristics, Simple Lagrangean and Lagrangean Reallocation, were tested on a realistic network - the primary Iberian natural gas network, organized with 65 nodes, connected by physical and virtual pipelines. Computational results are presented for both approaches, showing the location gas sources and allocation loads arrangement, system total costs and gas transportation mode.
Resumo:
With the increasing complexity of current networks, it became evident the need for Self-Organizing Networks (SON), which aims to automate most of the associated radio planning and optimization tasks. Within SON, this paper aims to optimize the Neighbour Cell List (NCL) for Long Term Evolution (LTE) evolved NodeBs (eNBs). An algorithm composed by three decisions were were developed: distance-based, Radio Frequency (RF) measurement-based and Handover (HO) stats-based. The distance-based decision, proposes a new NCL taking account the eNB location and interference tiers, based in the quadrants method. The last two algorithms consider signal strength measurements and HO statistics, respectively; they also define a ranking to each eNB and neighbour relation addition/removal based on user defined constraints. The algorithms were developed and implemented over an already existent radio network optimization professional tool. Several case studies were produced using real data from a Portuguese LTE mobile operator. © 2014 IEEE.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
This paper presents an optimization approach for the job shop scheduling problem (JSSP). The JSSP is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. The proposed approach is based on a genetic algorithm technique. The scheduling rules such as SPT and MWKR are integrated into the process of genetic evolution. The chromosome representation of the problem is based on random keys. The schedules are constructed using a priority rule in which the priorities and delay times of the operations are defined by the genetic algorithm. Schedules are constructed using a procedure that generates parameterized active schedules. After a schedule is obtained a local search heuristic is applied to improve the solution. The approach is tested on a set of standard instances taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed approach.
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Informática, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
The container loading problem (CLP) is a combinatorial optimization problem for the spatial arrangement of cargo inside containers so as to maximize the usage of space. The algorithms for this problem are of limited practical applicability if real-world constraints are not considered, one of the most important of which is deemed to be stability. This paper addresses static stability, as opposed to dynamic stability, looking at the stability of the cargo during container loading. This paper proposes two algorithms. The first is a static stability algorithm based on static mechanical equilibrium conditions that can be used as a stability evaluation function embedded in CLP algorithms (e.g. constructive heuristics, metaheuristics). The second proposed algorithm is a physical packing sequence algorithm that, given a container loading arrangement, generates the actual sequence by which each box is placed inside the container, considering static stability and loading operation efficiency constraints.
Resumo:
In this paper we address an order processing optimization problem known as minimization of open stacks (MOSP). We present an integer pro gramming model, based on the existence of a perfect elimination scheme in interval graphs, which finds an optimal sequence for the costumers orders.
Resumo:
The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The optimal schedule minimizes the operation costs and it is obtained using a particle swarm optimization approach, which is compared with a deterministic approach used as reference methodology. The proposed method is applied to a 33-bus distribution network with 32 medium voltage consumers and 66 distributed generation units.
Resumo:
8th International Workshop on Multiple Access Communications (MACOM2015), Helsinki, Finland.
Resumo:
This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational in- telligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two il- lustrative Traffic Engineering methods are described, allowing to attain routing con- figurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.
Resumo:
This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational intelligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two illustrative Traffic Engineering methods are described, allowing to attain routing configurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.
Resumo:
Algoritmo que optimiza y crea pairings para tripulaciones de líneas aéreas mediante la posterior programación en Java.
Resumo:
We address the problem of scheduling a multiclass $M/M/m$ queue with Bernoulli feedback on $m$ parallel servers to minimize time-average linear holding costs. We analyze the performance of a heuristic priority-index rule, which extends Klimov's optimal solution to the single-server case: servers select preemptively customers with larger Klimov indices. We present closed-form suboptimality bounds (approximate optimality) for Klimov's rule, which imply that its suboptimality gap is uniformly bounded above with respect to (i) external arrival rates, as long as they stay within system capacity;and (ii) the number of servers. It follows that its relativesuboptimality gap vanishes in a heavy-traffic limit, as external arrival rates approach system capacity (heavy-traffic optimality). We obtain simpler expressions for the special no-feedback case, where the heuristic reduces to the classical $c \mu$ rule. Our analysis is based on comparing the expected cost of Klimov's ruleto the value of a strong linear programming (LP) relaxation of the system's region of achievable performance of mean queue lengths. In order to obtain this relaxation, we derive and exploit a new set ofwork decomposition laws for the parallel-server system. We further report on the results of a computational study on the quality of the $c \mu$ rule for parallel scheduling.
Resumo:
We address the performance optimization problem in a single-stationmulticlass queueing network with changeover times by means of theachievable region approach. This approach seeks to obtainperformance bounds and scheduling policies from the solution of amathematical program over a relaxation of the system's performanceregion. Relaxed formulations (including linear, convex, nonconvexand positive semidefinite constraints) of this region are developedby formulating equilibrium relations satisfied by the system, withthe help of Palm calculus. Our contributions include: (1) newconstraints formulating equilibrium relations on server dynamics;(2) a flow conservation interpretation of the constraintspreviously derived by the potential function method; (3) newpositive semidefinite constraints; (4) new work decomposition lawsfor single-station multiclass queueing networks, which yield newconvex constraints; (5) a unified buffer occupancy method ofperformance analysis obtained from the constraints; (6) heuristicscheduling policies from the solution of the relaxations.