927 resultados para Multi-objective functions


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A package of B-spline finite strip models is developed for the linear analysis of piezolaminated plates and shells. This package is associated to a global optimization technique in order to enhance the performance of these types of structures, subjected to various types of objective functions and/or constraints, with discrete and continuous design variables. The models considered are based on a higher-order displacement field and one can apply them to the static, free vibration and buckling analyses of laminated adaptive structures with arbitrary lay-ups, loading and boundary conditions. Genetic algorithms, with either binary or floating point encoding of design variables, were considered to find optimal locations of piezoelectric actuators as well as to determine the best voltages applied to them in order to obtain a desired structure shape. These models provide an overall economy of computing effort for static and vibration problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Topology optimization consists in finding the spatial distribution of a given total volume of material for the resulting structure to have some optimal property, for instance, maximization of structural stiffness or maximization of the fundamental eigenfrequency. In this paper a Genetic Algorithm (GA) employing a representation method based on trees is developed to generate initial feasible individuals that remain feasible upon crossover and mutation and as such do not require any repairing operator to ensure feasibility. Several application examples are studied involving the topology optimization of structures where the objective functions is the maximization of the stiffness and the maximization of the first and the second eigenfrequencies of a plate, all cases having a prescribed material volume constraint.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In practical applications of optimization it is common to have several conflicting objective functions to optimize. Frequently, these functions are subject to noise or can be of black-box type, preventing the use of derivative-based techniques. We propose a novel multiobjective derivative-free methodology, calling it direct multisearch (DMS), which does not aggregate any of the objective functions. Our framework is inspired by the search/poll paradigm of direct-search methods of directional type and uses the concept of Pareto dominance to maintain a list of nondominated points (from which the new iterates or poll centers are chosen). The aim of our method is to generate as many points in the Pareto front as possible from the polling procedure itself, while keeping the whole framework general enough to accommodate other disseminating strategies, in particular, when using the (here also) optional search step. DMS generalizes to multiobjective optimization (MOO) all direct-search methods of directional type. We prove under the common assumptions used in direct search for single objective optimization that at least one limit point of the sequence of iterates generated by DMS lies in (a stationary form of) the Pareto front. However, extensive computational experience has shown that our methodology has an impressive capability of generating the whole Pareto front, even without using a search step. Two by-products of this paper are (i) the development of a collection of test problems for MOO and (ii) the extension of performance and data profiles to MOO, allowing a comparison of several solvers on a large set of test problems, in terms of their efficiency and robustness to determine Pareto fronts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most machining tasks require high accuracy and are carried out by dedicated machine-tools. On the other hand, traditional robots are flexible and easy to program, but they are rather inaccurate for certain tasks. Parallel kinematic robots could combine the accuracy and flexibility that are usually needed in machining operations. Achieving this goal requires proper design of the parallel robot. In this chapter, a multi-objective particle swarm optimization algorithm is used to optimize the structure of a parallel robot according to specific criteria. Afterwards, for a chosen optimal structure, the best location of the workpiece with respect to the robot, in a machining robotic cell, is analyzed based on the power consumed by the manipulator during the machining process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Generating manipulator trajectories considering multiple objectives and obstacle avoidance is a non-trivial optimization problem. In this paper a multi-objective genetic algorithm based technique is proposed to address this problem. Multiple criteria are optimized considering up to five simultaneous objectives. Simulation results are presented for robots with two and three degrees of freedom, considering two and five objectives optimization. A subsequent analysis of the spread and solutions distribution along the converged non-dominated Pareto front is carried out, in terms of the achieved diversity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Materials selection is a matter of great importance to engineering design and software tools are valuable to inform decisions in the early stages of product development. However, when a set of alternative materials is available for the different parts a product is made of, the question of what optimal material mix to choose for a group of parts is not trivial. The engineer/designer therefore goes about this in a part-by-part procedure. Optimizing each part per se can lead to a global sub-optimal solution from the product point of view. An optimization procedure to deal with products with multiple parts, each with discrete design variables, and able to determine the optimal solution assuming different objectives is therefore needed. To solve this multiobjective optimization problem, a new routine based on Direct MultiSearch (DMS) algorithm is created. Results from the Pareto front can help the designer to align his/hers materials selection for a complete set of materials with product attribute objectives, depending on the relative importance of each objective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The optimal design of laminated sandwich panels with viscoelastic core is addressed in this paper, with the objective of simultaneously minimizing weight and material cost and maximizing modal damping. The design variables are the number of layers in the laminated sandwich panel, the layer constituent materials and orientation angles and the viscoelastic layer thickness. The problem is solved using the Direct MultiSearch (DMS) solver for multiobjective optimization problems which does not use any derivatives of the objective functions. A finite element model for sandwich plates with transversely compressible viscoelastic core and anisotropic laminated face layers is used. Trade-off Pareto optimal fronts are obtained and the results are analyzed and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The optimal design of cold-formed steel columns is addressed in this paper, with two objectives: maximize the local-global buckling strength and maximize the distortional buckling strength. The design variables of the problem are the angles of orientation of cross-section wall elements the thickness and width of the steel sheet that forms the cross-section are fixed. The elastic local, distortional and global buckling loads are determined using Finite Strip Method (CUFSM) and the strength of cold-formed steel columns (with given length) is calculated using the Direct Strength Method (DSM). The bi-objective optimization problem is solved using the Direct MultiSearch (DMS) method, which does not use any derivatives of the objective functions. Trade-off Pareto optimal fronts are obtained separately for symmetric and anti-symmetric cross-section shapes. The results are analyzed and further discussed, and some interesting conclusions about the individual strengths (local-global and distortional) are found.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A methodology to increase the probability of delivering power to any load point through the identification of new investments in distribution network components is proposed in this paper. The method minimizes the investment cost as well as the cost of energy not supplied in the network. A DC optimization model based on mixed integer non-linear programming is developed considering the Pareto front technique in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power for any customer in the distribution system at the minimum possible cost for the system operator, while minimizing the energy not supplied cost. Thus, a multi-objective problem is formulated. To illustrate the application of the proposed methodology, the paper includes a case study which considers a 180 bus distribution network

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In developed countries, civil infrastructures are one of the most significant investments of governments, corporations, and individuals. Among these, transportation infrastructures, including highways, bridges, airports, and ports, are of huge importance, both economical and social. Most developed countries have built a fairly complete network of highways to fit their needs. As a result, the required investment in building new highways has diminished during the last decade, and should be further reduced in the following years. On the other hand, significant structural deteriorations have been detected in transportation networks, and a huge investment is necessary to keep these infrastructures safe and serviceable. Due to the significant importance of bridges in the serviceability of highway networks, maintenance of these structures plays a major role. In this paper, recent progress in probabilistic maintenance and optimization strategies for deteriorating civil infrastructures with emphasis on bridges is summarized. A novel model including interaction between structural safety analysis,through the safety index, and visual inspections and non destructive tests, through the condition index, is presented. Single objective optimization techniques leading to maintenance strategies associated with minimum expected cumulative cost and acceptable levels of condition and safety are presented. Furthermore, multi-objective optimization is used to simultaneously consider several performance indicators such as safety, condition, and cumulative cost. Realistic examples of the application of some of these techniques and strategies are also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Internet of Things (IoT) has emerged as a paradigm over the last few years as a result of the tight integration of the computing and the physical world. The requirement of remote sensing makes low-power wireless sensor networks one of the key enabling technologies of IoT. These networks encompass several challenges, especially in communication and networking, due to their inherent constraints of low-power features, deployment in harsh and lossy environments, and limited computing and storage resources. The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) [1] was proposed by the IETF ROLL (Routing Over Low-power Lossy links) working group and is currently adopted as an IETF standard in the RFC 6550 since March 2012. Although RPL greatly satisfied the requirements of low-power and lossy sensor networks, several issues remain open for improvement and specification, in particular with respect to Quality of Service (QoS) guarantees and support for mobility. In this paper, we focus mainly on the RPL routing protocol. We propose some enhancements to the standard specification in order to provide QoS guarantees for static as well as mobile LLNs. For this purpose, we propose OF-FL (Objective Function based on Fuzzy Logic), a new objective function that overcomes the limitations of the standardized objective functions that were designed for RPL by considering important link and node metrics, namely end-to-end delay, number of hops, ETX (Expected transmission count) and LQL (Link Quality Level). In addition, we present the design of Co-RPL, an extension to RPL based on the corona mechanism that supports mobility in order to overcome the problem of slow reactivity to frequent topology changes and thus providing a better quality of service mainly in dynamic networks application. Performance evaluation results show that both OF-FL and Co-RPL allow a great improvement when compared to the standard specification, mainly in terms of packet loss ratio and average network latency. 2015 Elsevier B.V. Al

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This chapter aims at developing a taxonomic framework to classify the studies on the flexible job shop scheduling problem (FJSP). The FJSP is a generalization of the classical job shop scheduling problem (JSP), which is one of the oldest NP-hard problems. Although various solution methodologies have been developed to obtain good solutions in reasonable time for FSJPs with different objective functions and constraints, no study which systematically reviews the FJSP literature has been encountered. In the proposed taxonomy, the type of study, type of problem, objective, methodology, data characteristics, and benchmarking are the main categories. In order to verify the proposed taxonomy, a variety of papers from the literature are classified. Using this classification, several inferences are drawn and gaps in the FJSP literature are specified. With the proposed taxonomy, the aim is to develop a framework for a broad view of the FJSP literature and construct a basis for future studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational in- telligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two il- lustrative Traffic Engineering methods are described, allowing to attain routing con- figurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.