852 resultados para Multi-objective Optimization (MOO)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dutos de transmissão são tubulações especialmente desenvolvidas para transportar produtos diversos a longas distâncias e representam a forma mais segura e econômica de transporte para grandes quantidades de fluidos. Os dutos de gás natural, denominados gasodutos, são usados para transportar o gás desde os campos de produção até os centros consumidores, onde o gás é inserido em redes de distribuição para entrega aos consumidores finais. Os gasodutos de transporte apresentam diversas características de monopólio natural, que são o principal argumento econômico para sua regulação. A regulação visa garantir que esta atividade seja explorada de maneira eficiente, refletindo em tarifas de transporte justas para os consumidores e que proporcionem o retorno adequado aos investidores, levando-se em consideração a quantidade de gás transportado. Neste contexto, o presente trabalho tem como objetivo propor metodologias de otimização multi-objetivo de projetos de redes de gasodutos de transporte, envolvendo métodos a posteriori. O problema de otimização formulado contempla restrições associadas ao escoamento do gás e o comportamento das estações de compressão. A solução do problema fornece um conjunto de projetos ótimos de redes de transporte em função da maximização da quantidade de gás natural transportado e da minimização da tarifa associada a esse serviço. A ferramenta foi aplicada a diversos estudos de caso com configurações típicas da indústria de transporte de gás natural. Os resultados mostraram que as metodologias propostas são capazes de fornecer subsídios que permitem ao tomador de decisão do ponto de vista regulatório realizar uma análise de trade-off entre a quantidade de gás transportado e a tarifa, buscando assim atender ao interesse da sociedade em relação à exploração do serviço de transporte

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the aerodynamic design optimisation of turbomachinery blades from a multi-objective perspective. The aim is to improve the performance of a specific stage and eventually of the whole engine. The integrated system developed for this purpose is described. It combines an existing geometry parameterisation scheme, a well-established CFD package and a novel multi-objective variant of the Tabu Search optimisation algorithm. Its performance is illustrated through a case study in which the flow characteristics most important to the overall performance of turbomachinery blades are optimised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and incore and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aerodynamic design of turbomachinery presents the design optimisation community with a number of exquisite challenges. Chief among these are the size of the design space and the extent of discontinuity therein. This discontinuity can serve to limit the full exploitation of high-fidelity computational fluid dynamics (CFD): such codes require detailed geometric information often available only sometime after the basic configuration of the machine has been set by other means. The premise of this paper is that it should be possible to produce higher performing designs in less time by exploiting multi-fidelity techniques to effectively harness CFD earlier in the design process, specifically by facilitating its participation in configuration selection. The adopted strategy of local multi-fidelity correction, generated on demand, combined with a global search algorithm via an adaptive trust region is first tested on a modest, smooth external aerodynamic problem. Speed-up of an order of magnitude is demonstrated, comparable to established techniques applied to smooth problems. A number of enhancements aimed principally at effectively evaluating a wide range of configurations quickly is then applied to the basic strategy, and the emerging technique is tested on a generic aeroengine core compression system. A similar order of magnitude speed-up is achieved on this relatively large and highly discontinuous problem. A five-fold increase in the number of configurations assessed with CFD is observed. As the technique places constraints neither on the underlying physical modelling of the constituent analysis codes nor on first-order agreement between those codes, it has potential applicability to a range of multidisciplinary design challenges. © 2012 by Jerome Jarrett and Tiziano Ghisu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the performance of different variants of a suitably tailored Tabu Search optimisation algorithm on a higher-order design problem. We consider four objective func- tions to describe the performance of a compressor stator row, subject to a number of equality and inequality constraints. The same design problem has been previously in- vestigated through single-, bi- and three-objective optimisation studies. However, in this study we explore the capabilities of enhanced variants of our Multi-objective Tabu Search (MOTS) optimisation algorithm in the context of detailed 3D aerodynamic shape design. It is shown that with these enhancements to the local search of the MOTS algorithm we can achieve a rapid exploration of complicated design spaces, but there is a trade-off be- tween speed and the quality of the trade-off surface found. Rapidly explored design spaces reveal the extremes of the objective functions, but the compromise optimum areas are not very well explored. However, there are ways to adapt the behaviour of the optimiser and maintain both a very efficient rate of progress towards the global optimum Pareto front and a healthy number of design configurations lying on the trade-off surface and exploring the compromise optimum regions. These compromise solutions almost always represent the best qualitative balance between the objectives under consideration. Such enhancements to the effectiveness of design space exploration make engineering design optimisation with multiple objectives and robustness criteria ever more practicable and attractive for modern advanced engineering design. Finally, new research questions are addressed that highlight the trade-offs between intelligence in optimisation algorithms and acquisition of qualita- tive information through computational engineering design processes that reveal patterns and relations between design parameters and objective functions, but also speed versus optimum quality. © 2012 AIAA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most common approach to decision making in multi-objective optimisation with metaheuristics is a posteriori preference articulation. Increased model complexity and a gradual increase of optimisation problems with three or more objectives have revived an interest in progressively interactive decision making, where a human decision maker interacts with the algorithm at regular intervals. This paper presents an interactive approach to multi-objective particle swarm optimisation (MOPSO) using a novel technique to preference articulation based on decision space interaction and visual preference articulation. The approach is tested on a 2D aerofoil design case study and comparisons are drawn to non-interactive MOPSO. © 2013 IEEE.