975 resultados para Mosher esters
Resumo:
The present study measures the increase in serum carotenoid concentration in 30 healthy individuals after supplementation with a low dose xanthophyll ester (3 and 6 mg of lutein equivalent/per day) when compared to a placebo. Serum levels of carotenoids were measured using HPLC and showed an increase in the concentration of lutein, zeaxanthin and four lutein metabolites proportional to dose. In order to further assess the importance of the end-group structure in carotenoids we have investigated the influence of the end-group type and functionality on the conformational energy barrier. We used the density functional method implemented on GAUSSIAN 98 to calculate the conformational energy curves for rotation of the P-ring or the E-ring relative to short polyene chains around the C6-C7 single bond. A large barrier is observed for the interconversion of conformers in the E-rings (8 kcal/mol) when compared to beta rings (2.3-3 kcal/mol).
Resumo:
Carbon-carbon and carbon-heteroatom bond formations constitute the central events in organic synthesis. In view of this, much of the research in organic synthesis has been focused on devising novel and efficient methods for such bond constructions. In general, polar, pericyclic and radical methodologies are employed for this purpose. The polar and radical reactions proceed via reactive intermediates such as carbanions, enols/enolates, enamines, carbocations, radical cations, radical anions, carbenes, zwitterions etc. In recent years, there has been enormous interest in the chemistry of zwitterionic species largely from the standpoint of their applications in multicomponent reactions (MCRs) and organocatalytic reactions. Zwitterions formed by the addition of nucleophiles to electrophilic π-systems such as acetylenic esters and azoesters have been the subject of extensive investigations; their synthetic utility, however, remained largely unexplored. Investigations in a number of laboratories, including our own, have shown that zwitterions of the type mentioned above on reaction with electrophiles give rise to carbo- and heterocyclic products by 1,3- or 1,4-dipolar cycloadditions. Recently, allenoates, another class of active π-systems were introduced to this field. Against this background, a systematic investigation of the reactions of various zwitterions derived from allenoates with different electrophiles especially 1,2-diones, were carried out. The results of these studies are embodied in the thesis entitled “Novel Synthesis of Carbocycles and Heterocycles Employing Zwitterions Derived from Allenic Esters”.
Resumo:
The organocatalytic activities of highly substituted proline esters obtained through asymmetric [3+2] cycloadditions of azomethine ylides derived from glycine iminoesters have been analyzed by 19F NMR and through kinetic isotope effects. Kinetic rate constants have been determined for unnatural proline esters incorporating different substituents. It has been found that exo-L and endo-L unnatural proline methyl esters yield opposite enantiomers in aldol reactions between cyclic ketones and aromatic aldehydes. The combined results reported in this study show subtle and remote effects that determine the organocatalytic behavior of these synthetic but readily available amino acid derivatives. These data can be used as design criteria for the development of new pyrrolidine-based organocatalysts.
Resumo:
We report an efficient methodology for the direct oxidative esterification of primary alcohols to diether-esters using pyridinium chlorochromate (PCC). Numerous studies were carried out to probe the reaction mechanism and at the same time optimize the reaction conditions. The reaction could be conducted with 1 equivalent of PCC and 1 equivalent of BF3 center dot OEt2. Indications based on literature precedent were that the reaction may proceed via a sequential alcohol oxidation to the aldehyde followed by a putative Cr or boron catalyzed Claisen-Tishchenko-type reaction. Using this efficient methodology, we synthesized a family of novel diether-esters in very good yields; some of these molecules were subsequently tested against both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). In addition, we also disclose a new synthetic strategy for the synthesis of lactam macrocycles with potential biological activity. This methodology included the regioselective borylation of the ester substrate and a subsequent Suzuki-Miyaura coupling to obtain the desired lactam macrocycle.
Resumo:
The research activity was focused on the transformation of methyl propionate (MP) into methyl methacrylate (MMA), avoiding the use of formaldehyde (FAL) thanks to a one-pot strategy involving in situ methanol (MeOH) dehydrogenation over the same catalytic bed were the hydroxy-methylation/dehydration of MP with FAL occurs. The relevance of such research line is related to the availability of cheap renewable bio-glycerol from biodiesel production, from which MP can be obtained via a series of simple catalytic reactions. Moreover, the conventional MMA synthesis (Lucite process) suffers from safety issues related to the direct use of carcinogenic FAL and depends on non-renewable MP. During preliminary studies, ketonization of carboxylic acids and esters has been recognized as a detrimental reaction which hinders the selective synthesis of MMA at low temperature, together with H-transfer hydrogenation with FAL or MeOH as the H-donor at higher temperatures. Therefore, ketonization of propionic acid (PA) and MP was investigated over several catalysts (metal oxides and metal phosphates), to obtain a better understanding of the structure-activity relationship governing the reaction and to design a catalyst for MMA synthesis capable to promote the desired reaction while minimizing ketonization and H-transfer. However, ketonization possesses scientific and industrial value itself and represents a strategy for the upgrade of bio oils from fast pyrolysis of lignocellulosic materials, a robust and versatile technology capable to transform the most abundant biomass into liquid biofuels. The catalysts screening showed that ZrO2 and La2O3 are the best catalysts, while MgO possesses low ketonization activity, but still, H-transfer parasitic hydrogenation of MMA reduces its yield over all catalysts. Such study resulted in the design of Mg/Ga mixed oxides that showed enhanced dehydrogenating activity towards MeOH at low temperatures. It was found that the introduction of Ga not only minimize ketonization, but also modulates catalyst basicity reducing H-transfer hydrogenations.
Resumo:
Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30%w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix.
Resumo:
The aim of this study was to compare the performance of the following techniques on the isolation of volatiles of importance for the aroma/flavor of fresh cashew apple juice: dynamic headspace analysis using PorapakQ(®) as trap, solvent extraction with and without further concentration of the isolate, and solid-phase microextraction (fiber DVB/CAR/PDMS). A total of 181 compounds were identified, from which 44 were esters, 20 terpenes, 19 alcohols, 17 hydrocarbons, 15 ketones, 14 aldehydes, among others. Sensory evaluation of the gas chromatography effluents revealed esters (n = 24) and terpenes (n = 10) as the most important aroma compounds. The four techniques were efficient in isolating esters, a chemical class of high impact in the cashew aroma/flavor. However, the dynamic headspace methodology produced an isolate in which the analytes were in greater concentration, which facilitates their identification (gas chromatography-mass spectrometry) and sensory evaluation in the chromatographic effluents. Solvent extraction (dichloromethane) without further concentration of the isolate was the most efficient methodology for the isolation of terpenes. Because these two techniques also isolated in greater concentration the volatiles from other chemical classes important to the cashew aroma, such as aldehydes and alcohols, they were considered the most advantageous for the study of cashew aroma/flavor.
Resumo:
The production of ethyl esters by alcoholysis is an alternative for splitting triacylglycerols due to the possibility of using low temperatures, which results in oxidative protection of the polyunsaturated fatty acids. Ethyl esters produced under mild conditions of temperature could be used as substrate for obtaining structured lipids. The reaction parameters of production of ethyl esters from fish oil with high content of omega-3 fatty acids by alcoholysis were optimized using response surface methodology. An experimental design (2³) (with levels +1 and -1, six axial points with levels -alpha and +alpha and three central points) was applied. The variables investigated were concentration of catalyst, amount of ethyl alcohol and temperature. Ethyl ester conversion was monitored by high performance size exclusion chromatography (HPSEC) and the best result obtained was 95% conversion rate. The optimal conditions were 40 °C, 1% of NaOH and 36% of ethanol.
Resumo:
An analytical comparison of three different techniques for quantitative profile of esters in cachaça is reported. The Ministério da Agricultura Pecuária e Abastecimento (MAPA) recommends the use of GC/FID or volumetry. Despite being laborious and lacking in chemical speciation, the volumetric technique for total ester content shows to be appropriate, reproducible, and accurate for the analysis of cachaça. However, the GC/FID suggested by MAPA, considering only ethyl acetate, shows inaccuracy, underestimating the total ester content by a median factor of 72%, mainly due to the absence of ethyl lactate analysis. On the other hand, the GC/MS technique that comprises the analysis and speciation of nine esters, including ethyl lactate, proved to be reproducible, simple, fast and accurate for the analysis of total ester content in cachaça. Thus, the total ester content results obtained using GC/FID must be considered with precaution.
Resumo:
Dipeptide syntheses starting from Ac-L-Tyr-OEt or Z-L-X-OMe (X: Asp, Tyr, Phe, Arg, Lys or Thr) and glycine amide in biphasic reaction media were achieved using two commercially available porcine pancreatic lipase (PPL) preparations (crude (cPPL) and purified PPL (pPPL)). Under the mild conditions employed, α-chymotrypsin, a pancreatic protease that also presents esterase activity, catalyzed Ac-L-Tyr-Gly-NH2 synthesis with high productivity. Product hydrolysis also occurred in most of the syntheses studied. Polyacrylamide gel electrophoresis, enzymatic assays employing specific chromogenic substrates and size-exclusion chromatography revealed that cPPL and pPPL contain contaminant proteases and, therefore, exhibit esterase and amidase activities. Overall, these data indicate that those contaminants may be the main catalysts of peptide bond synthesis when Nα-blocked-L-amino acid esters and the commercial PPL preparations are used. On the other hand, such data do not contest the possibility of using such enzyme preparations as an inexpensive source of catalysts for dipeptide synthesis under soft conditions.
Resumo:
Lipase from Burkholderia cepacia immobilized on superparamagnetic nanoparticles using adsorption and chemisorption methodologies was efficiently applied as recyclable biocatalyst in the enzymatic kinetic resolution of (RS)-1-(phenyl)ethanols via transesterification reactions. (R)-Esters and the remaining (S)-alcohols were obtained with excellent enantiomeric excess (> 99%), which corresponds to a perfect process of enzymatic kinetic resolution (conversion 50%, E > 200). The transesterification reactions catalysed with B. cepacia lipase immobilized by the glutaraldehyde method showed the best results in terms of reusability, preserving the enzyme activity (conversion 50%, E > 200) for at least 8 successive cycles.
Resumo:
Background: Subclinical hypothyroidism (SCH) has been associated with atherosclerosis, but the abnormalities in plasma lipids that can contribute to atherogenesis are not prominent. The aim of this study was to test the hypothesis that patients with normocholesterolemic, normotriglyceridemic SCH display abnormalities in plasma lipid metabolism not detected in routine laboratory tests including abnormalities in the intravascular metabolism of triglyceride-rich lipoproteins, lipid transfers to high-density lipoprotein (HDL), and paraoxonase 1 activity. The impact of levothyroxine (LT4) treatment and euthyroidism in these parameters was also tested. Methods: The study included 12 SCH women and 10 matched controls. Plasma kinetics of an artificial triglyceride-rich emulsion labeled with radioactive triglycerides and cholesteryl esters as well as in vitro transfer of four lipids from an artificial donor nanoemulsion to HDL were determined at baseline in both groups and after 4 months of euthyroidism in the SCH group. Results: Fractional clearance rates of triglycerides (SCH 0.035 +/- 0.016 min(-1), controls 0.029 +/- 0.013 min(-1), p=0.336) and cholesteryl esters (SCH 0.009 +/- 0.007 min(-1), controls 0.009 +/- 0.009 min(-1), p=0.906) were equal in SCH and controls and were unchanged by LT4 treatment and euthyroidism in patients with SCH, suggesting that lipolysis and remnant removal of triglyceride-rich lipoproteins were normal. Transfer of triglycerides to HDL (SCH 3.6 +/- 0.48%, controls 4.7 +/- 0.63%, p=0.001) and phospholipids (SCH 16.2 +/- 3.58%, controls 21.2 +/- 3.32%, p=0.004) was reduced when compared with controls. After LT4 treatment, transfers increased and achieved normal values. Transfer of free and esterified cholesterol to HDL, HDL particle size, and paraoxonase 1 activity were similar to controls and were unchanged by treatment. Conclusions: Although intravascular metabolism of triglyceride-rich lipoproteins was normal, patients with SCH showed abnormalities in HDL metabolism that were reversed by LT4 treatment and achievement of euthyroidism.
Resumo:
The effects of solvents on different chemical phenomena, including reactivity, spectroscopic data, and swelling of biopolymers can be rationalized by use of solvatochromic probes, substances whose UV-vis spectra, absorption, or emission are sensitive to the properties of the medium. Thermo-solvatochromism refers to the effect of temperature on solvatochromism. The study of both phenomena sheds light on the relative importance of the factors that contribute to solvation, namely, properties of the probe, those of the solvent (acidity, basicity, dipolarity/polarizability, and lipophilicity), and the temperature. Solvation in binary solvent mixtures is complex because of ""preferential solvation"" of the probe by some component of the mixture. A recently introduced solvent exchange model is based on the presence in the binary solvent mixture of the organic component (molecular solvent or ionic liquid), S, water, W, and a 1:1 hydrogen-bonded species (S-W). Solvation by the latter is more efficient than by its precursor solvents, due to probe-solvent hydrogen-bonding and hydrophobic interactions; dimethyl sulfoxide (DMSO)-W is an exception. Solvatochromic data are employed in order to explain apparently disconnected phenomena, namely, medium effect on the pH-independent hydrolysis of esters, (1)H NMR data of water-ionic liquid (IL) mixtures, and the swelling of cellulose.