226 resultados para Monocular
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: To assess visual outcomes and patient satisfaction following implantation of the Sulcoflex® multifocal intraocular lens (IOL; Rayner Intraocular Lenses Ltd., Hove, UK) in a procedure combining capsular bag lens implantation with sulcus placement of the Sulcoflex® IOL. Setting: Instituto de Oftalmologia de Assis, Assis, SP, Brazil. Methods: Cataract patients > 45 years, with hyperopia ≥ 1.50 D and potential acuity measurement ≥ 20/30 undergoing Sulcoflex® multifocal IOL implantation were included. Monocular and binocular uncorrected near and distance visual acuity (VA) were evaluated at five days, one month, and three months postoperatively. Contrast sensitivity and refraction were measured in a subset of patients three months postoperatively. Patient satisfaction was assessed one month postoperative. Results: This non-consecutive case series comprised 25 eyes of 13 patients. Eleven eyes (52%) had pre-existing retinal pathologies. Monocular distance VA improved significantly at all follow-up visits. At final follow-up, 88% of eyes had monocular uncorrected distance VA (UDVA) of at least 20/25 and 24% had monocular UDVA of 20/20. All eyes had binocular UDVA of at least 20/25, and 58% had binocular UDVA of 20/20. Monocular uncorrected near vision (UNVA) was J1 in 68% of eyes and all patients had binocular UNVA of J1. Of all eyes studied, 92% and 58% achieved a spherical equivalent within 1 D and −0.5 D, respectively. The majority of patients reported satisfaction with visual outcomes. Complications included a postoperative intraocular pressure spike in four eyes. Conclusion: The Sulcoflex® multifocal IOL improves near and distance VA in cataract patients with retinal abnormalities and good VA potential.
Resumo:
Purpose: To describe a new computerized method for the analysis of lid contour based on the measurement of multiple radial midpupil lid distances. Design: Evaluation of diagnostic technology. Participants and Controls: Monocular palpebral fissure images of 35 patients with Graves' upper eyelid retraction and of 30 normal subjects. Methods: Custom software was used to measure the conventional midpupil upper lid distance (MPLD) and 12 oblique MPLDs on each 15 degrees across the temporal (105 degrees, 120 degrees, 135 degrees, 150 degrees, 165 degrees, and 180 degrees) and nasal (75 degrees, 60 degrees, 45 degrees, 30 degrees, 15 degrees, and 0 degrees) sectors of the lid fissure. Main Outcome Measures: Mean, standard deviation, 5th and 95th percentiles of the oblique MPLDs obtained for patients and controls. Temporal/nasal MPLD ratios of the same angles with respect to the midline. Results: The MPLDs increased from the vertical midline in both nasal and temporal sectors of the fissure. In the control group the differences between the mean central MPLD (90 degrees) and those up to 30 degrees in the nasal (75 degrees and 60 degrees) and temporal sectors (105 degrees and 120 degrees) were not significant. For greater eccentricities, all temporal and nasal mean MPLDs increased significantly. When the MPLDs of the same angles were compared between groups, the mean values of the Graves' patients differed from control at all angles (F = 4192; P<0.0001). The greatest temporal/nasal asymmetry occurred 60 degrees from the vertical midline. Conclusions: The measurement of radial MPLD is a simple and effective way to characterize lid contour abnormalities. In patients with Graves' upper eyelid retraction, the method demonstrated that the maximum amplitude of the lateral lid flare sign occurred at 60 degrees from the vertical midline. Financial Disclosure(s): The authors have no proprietary or commercial interest in any of the materials discussed in this article. Ophthalmology 2012; 119: 625-628 (C) 2012 by the American Academy of Ophthalmology.
Resumo:
Bilayer segmentation of live video in uncontrolled environments is an essential task for home applications in which the original background of the scene must be replaced, as in videochats or traditional videoconference. The main challenge in such conditions is overcome all difficulties in problem-situations (e. g., illumination change, distract events such as element moving in the background and camera shake) that may occur while the video is being captured. This paper presents a survey of segmentation methods for background substitution applications, describes the main concepts and identifies events that may cause errors. Our analysis shows that although robust methods rely on specific devices (multiple cameras or sensors to generate depth maps) which aid the process. In order to achieve the same results using conventional devices (monocular video cameras), most current research relies on energy minimization frameworks, in which temporal and spacial information are probabilistically combined with those of color and contrast.
Resumo:
This paper describes a logic-based formalism for qualitative spatial reasoning with cast shadows (Perceptual Qualitative Relations on Shadows, or PQRS) and presents results of a mobile robot qualitative self-localisation experiment using this formalism. Shadow detection was accomplished by mapping the images from the robot’s monocular colour camera into a HSV colour space and then thresholding on the V dimension. We present results of selflocalisation using two methods for obtaining the threshold automatically: in one method the images are segmented according to their grey-scale histograms, in the other, the threshold is set according to a prediction about the robot’s location, based upon a qualitative spatial reasoning theory about shadows. This theory-driven threshold search and the qualitative self-localisation procedure are the main contributions of the present research. To the best of our knowledge this is the first work that uses qualitative spatial representations both to perform robot self-localisation and to calibrate a robot’s interpretation of its perceptual input.
Resumo:
This thesis deals with Visual Servoing and its strictly connected disciplines like projective geometry, image processing, robotics and non-linear control. More specifically the work addresses the problem to control a robotic manipulator through one of the largely used Visual Servoing techniques: the Image Based Visual Servoing (IBVS). In Image Based Visual Servoing the robot is driven by on-line performing a feedback control loop that is closed directly in the 2D space of the camera sensor. The work considers the case of a monocular system with the only camera mounted on the robot end effector (eye in hand configuration). Through IBVS the system can be positioned with respect to a 3D fixed target by minimizing the differences between its initial view and its goal view, corresponding respectively to the initial and the goal system configurations: the robot Cartesian Motion is thus generated only by means of visual informations. However, the execution of a positioning control task by IBVS is not straightforward because singularity problems may occur and local minima may be reached where the reached image is very close to the target one but the 3D positioning task is far from being fulfilled: this happens in particular for large camera displacements, when the the initial and the goal target views are noticeably different. To overcame singularity and local minima drawbacks, maintaining the good properties of IBVS robustness with respect to modeling and camera calibration errors, an opportune image path planning can be exploited. This work deals with the problem of generating opportune image plane trajectories for tracked points of the servoing control scheme (a trajectory is made of a path plus a time law). The generated image plane paths must be feasible i.e. they must be compliant with rigid body motion of the camera with respect to the object so as to avoid image jacobian singularities and local minima problems. In addition, the image planned trajectories must generate camera velocity screws which are smooth and within the allowed bounds of the robot. We will show that a scaled 3D motion planning algorithm can be devised in order to generate feasible image plane trajectories. Since the paths in the image are off-line generated it is also possible to tune the planning parameters so as to maintain the target inside the camera field of view even if, in some unfortunate cases, the feature target points would leave the camera images due to 3D robot motions. To test the validity of the proposed approach some both experiments and simulations results have been reported taking also into account the influence of noise in the path planning strategy. The experiments have been realized with a 6DOF anthropomorphic manipulator with a fire-wire camera installed on its end effector: the results demonstrate the good performances and the feasibility of the proposed approach.
Resumo:
Wheatstone’s stereoscope placed two mirrors on either side that were mounted at a right angle in order to view the two dissimilar drawings presented (Hankins 148). There are two identical monocular tubes that allow each eye to view the images (Hankins 148). Each eye views the image it was intended to see. The two eyes see slightly different images through this binocular vision (Hankins 148). The combination of the two images creates this illusion of depth and solidarity through their superimposition (Hankins 154). In order to view these images, the eyes were covered from all external light (Clay 152). The stereoscope was first seen as a philosophical toy along with other inventions such as the zoetrope, providing entertainment as well as scientific insight (Hankins 148). The stereoscope above is more similar to the “Holmes Stereoscope”, which transformed Wheatstone’s stereoscope into a handheld version that could be put on a stand (Hawkins 155). He replaced the retina of the eye with a sensitive plate; therefore, the lenses acted as the eyes (Silverman 738). In the video, an embellishment adorns the bottom of the stand that holds up the binocular lens and the images. The lenses are in a wooden frame that has an attached stand that holds the slides of images. There also is a knob on the side of the device that can adjust the lens on the two monocular tubes (Bokander 485).
Resumo:
Histological serial sections, three-dimensional reconstructions and morphometry served to study the postnatal development of V1 in tree shrews. The main objectives were to evaluate the expansion of V1, the implications of its growth on the occipital cortex and, vice versa, the effects of the expanding neocortex on the topography of V1. The future V1 was identified on postnatal day 1 by its granular layer IV, covering the superior surface of the occipital cortices including the poles. A subdivision of layer IV, distinctive for the binocular part, was evident in the central region. V1 expanded continuously with age into all directions succeeded by the maturation of layering. The monocular part was recognized from day 15 onward, after the binocular part had reached its medial border. In reference to the retinotopic map of V1, regions emerged in a coherent temporo-spatial sequence delineating the retinal topography in a central to peripheral gradient beginning with the visual streak representation. The growth of V1 was greatest until tree shrews open their eyes, culminated during adolescence, and completed after a subsequent decrease in the young adult. Simultaneous expansion of the neocortex induced a shifting of V1. Translation and elongation of V1 entailed that the occipital cortex covered the superior colliculi along with a downward rotation of the poles. The enlargement of the occipital part of the hemispheres was in addition associated with the formation of a small occipital horn in the lateral ventricles, indicating an incipient 'true' occipital lobe harbouring mainly cortices involved in visual functions.
Resumo:
The aging population has become a burning issue for all modern societies around the world recently. There are two important issues existing now to be solved. One is how to continuously monitor the movements of those people having suffered a stroke in natural living environment for providing more valuable feedback to guide clinical interventions. The other one is how to guide those old people effectively when they are at home or inside other buildings and to make their life easier and convenient. Therefore, human motion tracking and navigation have been active research fields with the increasing number of elderly people. However, motion capture has been extremely challenging to go beyond laboratory environments and obtain accurate measurements of human physical activity especially in free-living environments, and navigation in free-living environments also poses some problems such as the denied GPS signal and the moving objects commonly presented in free-living environments. This thesis seeks to develop new technologies to enable accurate motion tracking and positioning in free-living environments. This thesis comprises three specific goals using our developed IMU board and the camera from the imaging source company: (1) to develop a robust and real-time orientation algorithm using only the measurements from IMU; (2) to develop a robust distance estimation in static free-living environments to estimate people’s position and navigate people in static free-living environments and simultaneously the scale ambiguity problem, usually appearing in the monocular camera tracking, is solved by integrating the data from the visual and inertial sensors; (3) in case of moving objects viewed by the camera existing in free-living environments, to firstly design a robust scene segmentation algorithm and then respectively estimate the motion of the vIMU system and moving objects. To achieve real-time orientation tracking, an Adaptive-Gain Orientation Filter (AGOF) is proposed in this thesis based on the basic theory of deterministic approach and frequency-based approach using only measurements from the newly developed MARG (Magnet, Angular Rate, and Gravity) sensors. To further obtain robust positioning, an adaptive frame-rate vision-aided IMU system is proposed to develop and implement fast vIMU ego-motion estimation algorithms, where the orientation is estimated in real time from MARG sensors in the first step and then used to estimate the position based on the data from visual and inertial sensors. In case of the moving objects viewed by the camera existing in free-living environments, a robust scene segmentation algorithm is firstly proposed to obtain position estimation and simultaneously the 3D motion of moving objects. Finally, corresponding simulations and experiments have been carried out.
Resumo:
Tracking user’s visual attention is a fundamental aspect in novel human-computer interaction paradigms found in Virtual Reality. For example, multimodal interfaces or dialogue-based communications with virtual and real agents greatly benefit from the analysis of the user’s visual attention as a vital source for deictic references or turn-taking signals. Current approaches to determine visual attention rely primarily on monocular eye trackers. Hence they are restricted to the interpretation of two-dimensional fixations relative to a defined area of projection. The study presented in this article compares precision, accuracy and application performance of two binocular eye tracking devices. Two algorithms are compared which derive depth information as required for visual attention-based 3D interfaces. This information is further applied to an improved VR selection task in which a binocular eye tracker and an adaptive neural network algorithm is used during the disambiguation of partly occluded objects.
Resumo:
This thesis covers a broad part of the field of computational photography, including video stabilization and image warping techniques, introductions to light field photography and the conversion of monocular images and videos into stereoscopic 3D content. We present a user assisted technique for stereoscopic 3D conversion from 2D images. Our approach exploits the geometric structure of perspective images including vanishing points. We allow a user to indicate lines, planes, and vanishing points in the input image, and directly employ these as guides of an image warp that produces a stereo image pair. Our method is most suitable for scenes with large scale structures such as buildings and is able to skip the step of constructing a depth map. Further, we propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As the input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We convert the input into a regularly sampled 3D light field by resampling and aligning them in the spatio-temporal domain. We also present a novel technique for high-quality disparity estimation from light fields. Finally, we show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.
Resumo:
This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences.
Resumo:
En esta tesis se aborda la detección y el seguimiento automático de vehículos mediante técnicas de visión artificial con una cámara monocular embarcada. Este problema ha suscitado un gran interés por parte de la industria automovilística y de la comunidad científica ya que supone el primer paso en aras de la ayuda a la conducción, la prevención de accidentes y, en última instancia, la conducción automática. A pesar de que se le ha dedicado mucho esfuerzo en los últimos años, de momento no se ha encontrado ninguna solución completamente satisfactoria y por lo tanto continúa siendo un tema de investigación abierto. Los principales problemas que plantean la detección y seguimiento mediante visión artificial son la gran variabilidad entre vehículos, un fondo que cambia dinámicamente debido al movimiento de la cámara, y la necesidad de operar en tiempo real. En este contexto, esta tesis propone un marco unificado para la detección y seguimiento de vehículos que afronta los problemas descritos mediante un enfoque estadístico. El marco se compone de tres grandes bloques, i.e., generación de hipótesis, verificación de hipótesis, y seguimiento de vehículos, que se llevan a cabo de manera secuencial. No obstante, se potencia el intercambio de información entre los diferentes bloques con objeto de obtener el máximo grado posible de adaptación a cambios en el entorno y de reducir el coste computacional. Para abordar la primera tarea de generación de hipótesis, se proponen dos métodos complementarios basados respectivamente en el análisis de la apariencia y la geometría de la escena. Para ello resulta especialmente interesante el uso de un dominio transformado en el que se elimina la perspectiva de la imagen original, puesto que este dominio permite una búsqueda rápida dentro de la imagen y por tanto una generación eficiente de hipótesis de localización de los vehículos. Los candidatos finales se obtienen por medio de un marco colaborativo entre el dominio original y el dominio transformado. Para la verificación de hipótesis se adopta un método de aprendizaje supervisado. Así, se evalúan algunos de los métodos de extracción de características más populares y se proponen nuevos descriptores con arreglo al conocimiento de la apariencia de los vehículos. Para evaluar la efectividad en la tarea de clasificación de estos descriptores, y dado que no existen bases de datos públicas que se adapten al problema descrito, se ha generado una nueva base de datos sobre la que se han realizado pruebas masivas. Finalmente, se presenta una metodología para la fusión de los diferentes clasificadores y se plantea una discusión sobre las combinaciones que ofrecen los mejores resultados. El núcleo del marco propuesto está constituido por un método Bayesiano de seguimiento basado en filtros de partículas. Se plantean contribuciones en los tres elementos fundamentales de estos filtros: el algoritmo de inferencia, el modelo dinámico y el modelo de observación. En concreto, se propone el uso de un método de muestreo basado en MCMC que evita el elevado coste computacional de los filtros de partículas tradicionales y por consiguiente permite que el modelado conjunto de múltiples vehículos sea computacionalmente viable. Por otra parte, el dominio transformado mencionado anteriormente permite la definición de un modelo dinámico de velocidad constante ya que se preserva el movimiento suave de los vehículos en autopistas. Por último, se propone un modelo de observación que integra diferentes características. En particular, además de la apariencia de los vehículos, el modelo tiene en cuenta también toda la información recibida de los bloques de procesamiento previos. El método propuesto se ejecuta en tiempo real en un ordenador de propósito general y da unos resultados sobresalientes en comparación con los métodos tradicionales. ABSTRACT This thesis addresses on-road vehicle detection and tracking with a monocular vision system. This problem has attracted the attention of the automotive industry and the research community as it is the first step for driver assistance and collision avoidance systems and for eventual autonomous driving. Although many effort has been devoted to address it in recent years, no satisfactory solution has yet been devised and thus it is an active research issue. The main challenges for vision-based vehicle detection and tracking are the high variability among vehicles, the dynamically changing background due to camera motion and the real-time processing requirement. In this thesis, a unified approach using statistical methods is presented for vehicle detection and tracking that tackles these issues. The approach is divided into three primary tasks, i.e., vehicle hypothesis generation, hypothesis verification, and vehicle tracking, which are performed sequentially. Nevertheless, the exchange of information between processing blocks is fostered so that the maximum degree of adaptation to changes in the environment can be achieved and the computational cost is alleviated. Two complementary strategies are proposed to address the first task, i.e., hypothesis generation, based respectively on appearance and geometry analysis. To this end, the use of a rectified domain in which the perspective is removed from the original image is especially interesting, as it allows for fast image scanning and coarse hypothesis generation. The final vehicle candidates are produced using a collaborative framework between the original and the rectified domains. A supervised classification strategy is adopted for the verification of the hypothesized vehicle locations. In particular, state-of-the-art methods for feature extraction are evaluated and new descriptors are proposed by exploiting the knowledge on vehicle appearance. Due to the lack of appropriate public databases, a new database is generated and the classification performance of the descriptors is extensively tested on it. Finally, a methodology for the fusion of the different classifiers is presented and the best combinations are discussed. The core of the proposed approach is a Bayesian tracking framework using particle filters. Contributions are made on its three key elements: the inference algorithm, the dynamic model and the observation model. In particular, the use of a Markov chain Monte Carlo method is proposed for sampling, which circumvents the exponential complexity increase of traditional particle filters thus making joint multiple vehicle tracking affordable. On the other hand, the aforementioned rectified domain allows for the definition of a constant-velocity dynamic model since it preserves the smooth motion of vehicles in highways. Finally, a multiple-cue observation model is proposed that not only accounts for vehicle appearance but also integrates the available information from the analysis in the previous blocks. The proposed approach is proven to run near real-time in a general purpose PC and to deliver outstanding results compared to traditional methods.
Resumo:
Multi-camera 3D tracking systems with overlapping cameras represent a powerful mean for scene analysis, as they potentially allow greater robustness than monocular systems and provide useful 3D information about object location and movement. However, their performance relies on accurately calibrated camera networks, which is not a realistic assumption in real surveillance environments. Here, we introduce a multi-camera system for tracking the 3D position of a varying number of objects and simultaneously refin-ing the calibration of the network of overlapping cameras. Therefore, we introduce a Bayesian framework that combines Particle Filtering for tracking with recursive Bayesian estimation methods by means of adapted transdimensional MCMC sampling. Addi-tionally, the system has been designed to work on simple motion detection masks, making it suitable for camera networks with low transmission capabilities. Tests show that our approach allows a successful performance even when starting from clearly inaccurate camera calibrations, which would ruin conventional approaches.
Resumo:
These slides present several 3-D reconstruction methods to obtain the geometric structure of a scene that is viewed by multiple cameras. We focus on the combination of the geometric modeling in the image formation process with the use of standard optimization tools to estimate the characteristic parameters that describe the geometry of the 3-D scene. In particular, linear, non-linear and robust methods to estimate the monocular and epipolar geometry are introduced as cornerstones to generate 3-D reconstructions with multiple cameras. Some examples of systems that use this constructive strategy are Bundler, PhotoSynth, VideoSurfing, etc., which are able to obtain 3-D reconstructions with several hundreds or thousands of cameras. En esta presentación se tratan varios métodos de reconstrucción 3-D para la obtención de la estructura geométrica de una escena que es visualizada por varias cámaras. Se enfatiza la combinación de modelado geométrico del proceso de formación de la imagen con el uso de herramientas estándar de optimización para estimar los parámetros característicos que describen la geometría de la escena 3-D. En concreto, se presentan métodos de estimación lineales, no lineales y robustos de las geometrías monocular y epipolar como punto de partida para generar reconstrucciones con tres o más cámaras. Algunos ejemplos de sistemas que utilizan este enfoque constructivo son Bundler, PhotoSynth, VideoSurfing, etc., los cuales, en la práctica pueden llegar a reconstruir una escena con varios cientos o miles de cámaras.