997 resultados para Monoamine-containing Neurons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole-cell patch clamp recordings were made from pyramidal neurons in the rat lateral amygdala (LA). Synaptic currents were evoked by stimulating in either the external capsule (ec), internal capsule (ic) or basolateral nucleus (BLA). Stimulation of either the ic, ec or BLA evoked a glutamatergic excitatory synaptic current (EPSC) which was mediated by both non-NMDA and NMDA (N-methyl-D-aspartic acid) receptors, The ratio of the amplitude of the NMDA receptor-mediated component measured at +40 mV to the amplitude of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) component measured at -60 mV was similar regardless of whether EPSCs were evoked in the ec, ic or BLA. At resting membrane potentials, excitatory synaptic potentials evoked from either the ec or putative thalamic inputs were unaffected by application of the NMDA receptor antagonist APV. Spontaneous glutamatergic currents had two components to their decay phase. The slow component was selectively blocked by the NMDA receptor antagonist D-APV, indicating that AMPA and NMDA receptors are colocalized in spiny neurons. We conclude that pyramidal cells of the LA receive convergent inputs from the cortex, thalamus and basal nuclei. At all inputs, both AMPA/kainate and NMDA-type receptors are active and colocalized in the postsynaptic density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identity of the potassium channel underlying the slow, apamin-insensitive component of the afterhyperpolarization current (sl(AHP)) remains unknown. We studied sl(AHP) in CA1 pyramidal neurons using simultaneous whole-cell recording, calcium fluorescence imaging, and flash photolysis of caged compounds. Intracellular calcium concentration ([Ca2+](i)) peaked earlier and decayed more rapidly than sl(AHP). Loading cells with low concentrations of the calcium chelator EGTA slowed the activation and decay of sl(AHP). In the presence of EGTA, intracellular calcium decayed with two time constants. When [Ca2+](i) was increased rapidly after photolysis of DM-Nitrophen, both apamin-sensitive and apamin-insensitive outward currents were activated. The apamin-sensitive current activated rapidly (<20 msec), whereas the apamin-insensitive current activated more slowly (180 msec). The apamin-insensitive current was reduced by application of serotonin and carbachol, confirming that it was caused by sl(AHP) channels. When [Ca2+](i) was decreased rapidly via photolysis of diazo-2, the decay of sl(AHP) was similar to control (1.7 sec). All results could be reproduced by a model potassium channel gated by calcium, suggesting that the channels underlying sl(AHP) have intrinsically slow kinetics because of their high affinity for calcium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ile-->Ser84 substitution in the thyroid hormone transport protein transthyretin is one of over 50 variations found to be associated with familial amyloid polyneuropathy, a hereditary type of lethal amyloidosis. Using a peptide analogue of the loop containing residue 84 in transthyretin, we have examined the putative local structural effects of this substitution using H-1-NMR spectroscopy. The peptide, containing residues 71-93 of transthyretin with its termini linked via a disulfide bond, was found to possess the same helix-turn motif as in the corresponding region of the crystallographically derived structure of transthyretin in 20% trifluoroethanol (TFE) solution. It therefore, represents a useful model with which to examine the effects of amyloidogenic substitutions. In a peptide analogue containing the Ile84-->Ser substitution it was found that the substitution does not greatly disrupt the overall three-dimensional structure, but leads to minor local differences at the turn in which residue 84 is involved. Coupling constant and NOE measurements indicate that the helix-turn motif is still present, but differences in chemical shifts and amide-exchange rates reflect a small distortion. This is in keeping with observations that several other mutant forms of transthyretin display similar subunit interactions and those that have been structurally analysed possess a near native structure. We propose that the Ser84 mutation induces only subtle perturbations to the transthyretin structure which predisposes the protein to amyloid formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MDMA (3,4-methylenedioxymethamphetamine) is an amphetamine analogue that produces euphoric and stimulant effects and a feeling of closeness towards others.1 and 2 For more than a decade, MDMA (colloquially known as “Ecstasy” or “E”) has been widely used by young adults as a dance-party drug. The usual recreational oral dose is 1-2 tablets (each containing about 60-120 mg of MDMA) a standard oral dose of 0·75–4·00 mg per kg in 60–80 kg people. MDMA is typically used once fortnightly or less because tolerance to the effects of MDMA develops rapidly. More frequent use requires larger doses to achieve the desired effects, but this increases the prevalence of unpleasant side-effects.3 A number of deaths have occurred as a result of malignant hyperthermia or idiosyncractic reactions to the drug, but these have been rare.4 MDMA is perceived by many users to be a safe drug.1 Few report the craving associated with opiates or cocaine3 and most MDMA users are aware of only mild and transient disruptions of functioning.3 and 5 AC Parrott and J Lasky, Ecstasy (MDMA) effects upon mood and cognition: before, during and after a Saturday night dance, Psychopharmacology 139 (1998), pp. 261–268. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (174)5 The perceived safety of MDMA is at odds with animal evidence of MDMA neurotoxicity, an increasing prevalence of hazardous patterns of use among recreational MDMA users, and emerging evidence of neurotoxicity among heavier MDMA users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chondroitin sulfate proteoglycans neurocan and phosphacan are believed to modulate neurite outgrowth by binding to cell adhesion molecules, tenascin, and the differentiation factors heparin-binding growth-associated molecule and amphoterin. To assess the role of these chondroitin sulfate proteoglycans in the olfactory system, we describe here their expression patterns during both embryonic and postnatal development in the mouse. Immunoreactivity for neurocan was first detected in primary olfactory neurons at embryonic day 11.5 (E11.5). Neurocan was expressed by primary olfactory axons as they extended toward the rostral pole of the telencephalon as well as by their arbors in glomeruli after they contacted the olfactory bulb. The role of neurocan was examined by growing olfactory neurons on an extracellular matrix substrate containing neurocan or on extracellular matrix in the presence of soluble neurocan. In both cases, neurocan strongly promoted neurite outgrowth. These results suggest that neurocan supports the growth of primary olfactory axons through the extracellular matrix as they project to the olfactory bulb during development. Phosphacan, unlike neurocan, was present within the mesenchyme surrounding the E11.5 and E12.5 nasal cavity. This expression decreased at E13.5, concomitant with a transient appearance of phosphacan in nerve fascicles. Within the embryonic olfactory bulb, phosphacan was localised to the external and internal plexiform layers. However, during early postnatal development phosphacan was concentrated in the glomerular layer. These results suggest that phosphacan may play a role in delineating the pathway of growing olfactory axons as well as defining the laminar organization of the bulb. Together, the spatiotemporal expression patterns of neurocan and phosphacan indicate that these chondroitin sulfate proteoglycans have diverse in situ roles, which are dependent on context-specific interactions with extracellular and cell adhesion molecules within the developing olfactory nerve pathway. (C) 2000 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensory axons of different sensory modalities project into typical domains within insect ganglia. Tactile and gustatory axons project into a ventral layer of neuropil and proprioceptive afferents, including chordotonal axone, into an intermediate or dorsal layer. Here, we describe the central projections of sensory neurons in the first instar Drosophila larva, relating them to the projection of the same sensory afferents in the embryo and to sensory afferents of similar type in other insects. Several neurons show marked morphologic changes in their axon terminals in the transition between the embryo and larva. During a short morphogenetic period late in embryogenesis, the axon terminals of the dorsal bipolar dendrite stretch receptor change their shape and their distribution within the neuromere. In the larva, external sense organ neurons (es) project their axons into a ventral layer of neuropil. Chordotonal sensory neurons (ch) project into a slightly more dorsal region that is comparable to their projection in adults. The multiple dendrite (md) neurons show two distinctive classes of projection. One group of md neurons projects into the ventral-most neuropil region, the same region into which es neurons project. Members of this group are related by lineage to es neurons or share a requirement for expression of the same proneural gene during development. Other md neurons project into a more dorsal region. Sensory receptors projecting into dorsal neuropil possibly provide proprioceptive feedback from the periphery to central motorneurons and are candidates for future genetic and cellular analysis of simple neural circuitry. J. Comp. Neurol. 425:34-44, 2000. (C) 2000 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Influx of calcium via voltage-dependent calcium channels during the action potential lends to increases in cytosolic calcium that can initiate a number of physiological processes. One of these is the activation of potassium currents on the plasmalemma. These calcium-activated potassium currents contribute to action potential repolarization and are largely responsible for the phenomenon of spike frequency adaptation. This refers to the progressive slowing of the frequency of discharge of action potentials during sustained injection of depolarizing current. In some cell types, this adaptation is so marked that despite the presence of depolarizing current, only a single spike (or a few spikes) is initiated, Following cessation of current injection, slow deactivation of calcium-activated potassium currents is also responsible for the prolonged hyperpolarization that often follows, 2. A number of macroscopic calcium-activated potassium currents that can be separated on the basis of kinetic and pharmacological criteria have been described in mammalian neurons. At the single channel level, several types of calcium-activated potassium channels also have been characterized. While for some macroscopic currents the underlying:single channels have been unambiguously defined, for other currents the identity of the underlying channels is not clear. 3. In the present review we describe the properties of the known types of calcium-activated potassium currents in mammalian neurons and indicate the relationship between macroscopic currents and particular single channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we characterize the electrophysiological and morphological properties of spiny principal neurons in the rat lateral amygdala using whole cell recordings in acute brain slices. These neurons exhibited a range of firing properties in response to prolonged current injection. Responses varied from cells that showed full spike frequency adaptation, spiking three to five times, to those that showed no adaptation. The differences in firing patterns were largely explained by the amplitude of the afterhyperpolarization (AHP) that followed spike trains. Cells that showed full spike frequency adaptation had large amplitude slow AHPs, whereas cells that discharged tonically had slow AHPs of much smaller amplitude. During spike trains, all cells showed a similar broadening of their action potentials. Biocytin-filled neurons showed a range of pyramidal-like morphologies, differed in dendritic complexity, had spiny dendrites, and differed in the degree to which they clearly exhibited apical versus basal dendrites. Quantitative analysis revealed no association between cell morphology and firing properties. We conclude that the discharge properties of neurons in the lateral nucleus, in response to somatic current injections, are determined by the differential distribution of ionic conductances rather than through mechanisms that rely on cell morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 75 kD low-affinity neurotrophin receptor (p75(NTR)) is expressed in developing and axotomised spinal motor neurons. There is now convincing evidence that p75NTR can, under some circumstances, become cytotoxic and promote neuronal cell death. We report here that a single application of antisense p75(NTR) oligodeoxynucleotides to the proximal nerve stumps of neonatal rats significantly reduces the loss of axotomised motor neurons compared to controls treated with nonsense oligodeoxynucleotides or phosphate-buffered saline. Our investigations also show that daily systemic intraperitoneal injections of antisense p75(NTR) oligodeoxynucleotides for 14 days significantly reduce the loss of axotomised motor neurons compared to controls. Furthermore, we found that systemic delivery over a similar period continues to be effective following axotomy when intraperitoneal injections were 1) administered after a delay of 24 hr, 2) limited to the first 7 days, or 3) administered every third day. In addition, p75(NTR) protein levels were reduced in spinal motor neurons following treatment with antisense p75(NTR) oligodeoxynucleotides. There were also no obvious side effects associated with antisense p75(NTR) oligodeoxynucleotide treatments as determined by behavioural observations and postnatal weight gain. Our findings indicate that antisense-based strategies could be a novel approach for the prevention of motor neuron degeneration associated with injuries or disease. (C) 2001 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solution conformation and calcium binding properties have been investigated for the two cyclic octapeptides cyclo(-D-Thr-D-Val(Thz)-Ile-)(2) (4) and cyclo(-Thr-Gly(Thz)-Ile-Ser-Gly(Thz)-Ile-)(5) and the results are compared to those for the cyclic octapeptides previously studied; ascidiacyclamide (1), patellamide D (2), cyclo(-Thr-D-Val(Thz)-Ile-)(2) (3), and cyclo(-Thr-D-Val-alphaAbu-Ile-)2 (6). Both 4 and 5 contain two heterocyclic thiazole ring constraints but the latter has a larger degree of flexibility as a consequence of the glycine residues within the cyclic framework. The solution conformation of 4 and 5 was determined from H-1 NMR spectra and found to be a twisted figure of eight similar to that for 2. Complexation studies using H-1 NMR and CD spectroscopy yielded 1 : 1 calcium-peptide binding constants (logK) for the two peptides (2.3 (4) and 5.7 (5)). For 5 the magnitude of the binding constant was verified by a competition titration using CD. The different calcium-binding affinities of 3 (logK = 4.0) and 4 is attributed to the stereochemistry of the threonine residue. The magnitude of the binding constant for 5 compared to 3 and 4 (all peptides containing two thiazole ring constrains) demonstrates that the increase in flexibility of the cyclic peptide has a dramatic effect on the Ca2+ binding ability. The affinity for Ca2+ thus decreases in the order (6 similar to 5 > 3 > 2 similar to 1 > 4). The number of carbonyl donors available on each peptide has only a limited effect on calcium binding. The most important factor is the flexibility, which allows for a conformation of the peptide capable of binding calcium efficiently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cholinergic system is thought to play an important role in hippocampal-dependent learning and memory. However, the mechanism of action of the cholinergic system in these actions in not well understood. Here we examined the effect of muscarinic receptor stimulation in hippocampal CA1 pyramidal neurons using whole-cell recordings in acute brain slices coupled with high-speed imaging of intracellular calcium. Activation of muscarinic acetylcholine receptors by synaptic stimulation of cholinergic afferents or application of muscarinic agonist in CA1 pyramidal neurons evoked a focal rise in free calcium in the apical dendrite that propagated as a wave into the soma and invaded the nucleus. The calcium rise to a single action potential was reduced during muscarinic stimulation. Conversely, the calcium rise during trains of action potentials was enhanced during muscarinic stimulation. The enhancement of free intracellular calcium was most pronounced in the soma and nuclear regions. In many cases, the calcium rise was distinguished by a clear inflection in the rising phase of the calcium transient, indicative of a regenerative response. Both calcium waves and the amplification of action potential-induced calcium transients were blocked the emptying of intracellular calcium stores or by antagonism of inositol 1,4,5-trisphosphate receptors with heparin or caffeine. Ryanodine receptors were not essential for the calcium waves or enhancement of calcium responses. Because rises in nuclear calcium are known to initiate the transcription of novel genes, we suggest that these actions of cholinergic stimulation may underlie its effects on learning and memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. In vivo studies have shown that the low-affinity 75 kDa neurotrophin receptor (p75NTR) is involved in axotomy-induced cell death of sensory and motor neurons. To further examine the importance of p75NTR in mediating neuronal death in vivo , we examined the effect of axotomy in the p75NTR-knockout mouse, which has a disrupted ligand-binding domain. 2. The extent of sensory and motor neuron loss in the p75NTR-knockout mouse following axotomy was not significantly different to that in wild-type mice. This suggests that disruption of the ligand-binding domain is insufficient to block the cell death process in axotomized neurons. 3. Immunohistochemical studies showed that axotomized neurons continue to express this mutant receptor with its intracellular death-signalling moiety intact. 4. Treatment with antisense oligonucleotides targeted against p75NTR resulted in significant reduction in the loss of axotomized neurons in the knockout mouse. 5. These data suggest that the intracellular domain of p75NTR is essential for death-signalling and that p75NTR can signal apoptosis, despite a disrupted ligand-binding domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The apposition compound eyes of stomatopod crustaceans contain a morphologically distinct eye region specialized for color and polarization vision, called the mid-band. In two stomatopod superfamilies, the mid-band is constructed from six rows of enlarged ommatidia containing multiple photoreceptor classes for spectral and polarization vision. The aim of this study was to begin to analyze the underlying neuroarchitecture, the design of which might reveal clues how the visual system interprets and communicates to deeper levels of the brain the multiple channels of information supplied by the retina. Reduced silver methods were used to investigate the axon pathways from different retinal regions to the lamina ganglionaris and from there to the medulla externa, the medulla interna, and the medulla terminalis. A swollen band of neuropil-here termed the accessory lobe-projects across the equator of. the lamina ganglionaris, the medulla externa, and the medulla interna and represents, structurally, the retina's mid-band. Serial semithin and ultrathin resin sections were used to reconstruct the projection of photoreceptor axons from the retina to the lamina ganglionaris. The eight axons originating from one ommatidium project to the same lamina cartridge. Seven short visual fibers end at two distinct levels in each lamina cartridge, thus geometrically separating the two channels of polarization and spectral information. The eighth visual fiber runs axially through the cartridge and terminates in the medulla externa. We conclude that spatial, color, and polarization information is divided into three parallel data streams from the retina to the central nervous system. (C) 2003 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously shown that exposing rats to a relatively high dose of ethanol during early postnatal life can result in an alteration in spatial learning ability. The hippocampal formation is known to be involved in the control of this ability. The purpose of the present study was to determine whether exposure of rats to ethanol during early postnatal life had either immediate or delayed effects on the numbers of pyramidal cells in the CA1-CA3 subregion of the hippocampus. Wistar rats were exposed to a relatively high daily dose of ethanol at postnatal day 10-15 by placing them for 3 h/day in a chamber containing ethanol vapor. Groups of ethanol-treated (ET), separation control (SC), and mother-reared control (MRC) rats were anesthetized and killed at 16 and 30 days of age by perfusion with phosphate-buffered 2.5% glutaraldehyde. The Cavalieri principle was used to determine the volumes of the CA1 and CA2+CA3 regions. The physical disector method was used to estimate the numerical density of neurons in each of the subdivisions. The total number of pyramidal cells was calculated by multiplying the appropriate estimates of the numerical density by the volume. There were significant age-related reductions in the total numbers of pyramidal cells at 16-30 days of age irrespective of the groups examined. Ethanol treated rats were found to have slightly but significantly fewer pyramidal cell neurons than either the MRC or SC groups. These observations indicate that pyramidal cells in the hippocampus may be vulnerable to a relatively high dose of ethanol exposure during this short period of early postnatal life. (C) 2003 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using whole cell recordings from acute slices of the rat amygdala, we have examined the physiological properties of and synaptic connectivity to neurons in the lateral sector of the central amygdala (CeA). Based on their response to depolarizing current injections, CeA neurons could be divided into three types. Adapting neurons fired action potentials at the start of the current injections at high frequency and then showed complete spike-frequency adaptation with only six to seven action potentials evoked with suprathreshold current injections. Late-firing neurons fired action potentials with a prolonged delay at threshold but then discharged continuously with larger current injections. Repetitive firers discharged at the start of the current injection at threshold and then discharged continuously with larger current injections. All three cells showed prolonged afterhyperpolarizations (AHPs) that followed trains of action potentials. The AHP was longer lasting with a larger slow component in adapting neurons. The AHP in all cell types contained a fast component that was inhibited by the SK channel blocker UCL1848. The slow component, not blocked by UCL1848, was blocked by isoprenaline and was significantly larger in adapting neurons. Blockade of SK channels increased the discharge frequency in late firers and regular-spiking neurons but had no effect on adapting neurons. Blockade of the slow AHP with isoprenaline had no effect on any cell type. All cells received a mixed glutamatergic and GABAergic input from a medial pathway. Electrical stimulation of the lateral (LA) and basolateral (BLA)nuclei evoked a large monosynaptic glutamatergic response followed by a disynaptic inhibitory postsynaptic potential. Activation of neurons in the LA and BLA by puffer application of glutamate evoked a small monosynaptic response in 13 of 55 CeA neurons. Local application of glutamate to the CeL evoked a GABAergic response in all cells. These results show that at least three types of neurons are present in the CeA that can be distinguished on their firing properties. The firing frequency of two of these cell types is determined by activation of SK channels. Cells receive a small input from the LA and BLA but may receive inputs that course through these nuclei en route to the CeA.