968 resultados para Molecular water


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many basic physiological functions exhibit circadian rhythmicity. These functional rhythms are driven, in part, by the circadian clock, an ubiquitous molecular mechanism allowing cells and tissues to anticipate regular environmental events and to prepare for them. This mechanism has been shown to play a particularly important role in maintaining stability (homeostasis) of internal conditions. Because the homeostatic equilibrium is continuously challenged by environmental changes, the role of the circadian clock is thought to consist in the anticipative adjustment of homeostatic pathways in relation with the 24h environmental cycle. The kidney is the principal organ responsible for the regulation of the composition and volume of extracellular fluids (ECF). Several major parameters of kidney function, including renal plasma flow (RPF), glomerular filtration rate (GFR) and tubular reabsorption and secretion have been shown to exhibit strong circadian oscillations. Recent evidence suggest that the circadian clock can be involved in generation of these rhythms through external circadian time cues (e.g. humoral factors, activity and body temperature rhythms) or, trough the intrinsic renal circadian clock. Here, we discuss the role of renal circadian mechanisms in maintaining homeostasis of water and three major ions, namely, Na(+), K(+) and Cl(-).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e., distal convoluted tubule (DCT) and connecting tubule (CNT) and the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf, and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, alphaENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms, and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Excessive exposure to solar ultraviolet radiation is involved in the complex biologic process of cutaneous aging. Wavelengths in the ultraviolet-A and -B range (UV-A and UV-B) have been shown to be responsible for the induction of proteases, e. g. the collagenase matrix metalloproteinase 1 (MMP-1), which are related to cell aging. As devices emitting longer wavelengths are widely used in therapeutic and cosmetic interventions and as the induction of MMP-1 by water-filtered infrared-A (wIRA) had been discussed, it was of interest to assess effects of wIRA on the cellular and molecular level known to be possibly involved in cutaneous degeneration. OBJECTIVES: Investigation of the biological implications of widely used water-filtered infrared-A (wIRA) radiators for clinical use on human skin fibroblasts assessed by MMP-1 gene expression (MMP-1 messenger ribonucleic acid (mRNA) expression).Methods: Human skin fibroblasts were irradiated with approximately 88% wIRA (780-1400 nm) and 12% red light (RL, 665-780 nm) with 380 mW/cm(2) wIRA(+RL) (333 mW/cm(2) wIRA) on the one hand and for comparison with UV-A (330-400 nm, mainly UV-A1) and a small amount of blue light (BL, 400-450 nm) with 28 mW/cm(2) UV-A(+BL) on the other hand. Survival curves were established by colony forming ability after single exposures between 15 minutes and 8 hours to wIRA(+RL) (340-10880 J/cm(2) wIRA(+RL), 300-9600 J/cm(2) wIRA) or 15-45 minutes to UV-A(+BL) (25-75 J/cm(2) UV-A(+BL)). Both conventional Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) and quantitative real-time RT-PCR techniques were used to determine the induction of MMP-1 mRNA at two physiologic temperatures for skin fibroblasts (30 degrees C and 37 degrees C) in single exposure regimens (15-60 minutes wIRA(+RL), 340-1360 J/cm(2) wIRA(+RL), 300-1200 J/cm(2) wIRA; 30 minutes UV-A(+BL), 50 J/cm(2) UV-A(+BL)) and in addition at 30 degrees C in a repeated exposure protocol (up to 10 times 15 minutes wIRA(+RL) with 340 J/cm(2) wIRA(+RL), 300 J/cm(2) wIRA at each time). RESULTS: Single exposure of cultured human dermal fibroblasts to UV-A(+BL) radiation yielded a very high increase in MMP-1 mRNA expression (11 +/-1 fold expression for RT-PCR and 76 +/-2 fold expression for real-time RT-PCR both at 30 degrees C, 75 +/-1 fold expression for real-time RT-PCR at 37 degrees C) and a dose-dependent decrease in cell survival. In contrast, wIRA(+RL) did not produce cell death and did not induce a systematic increase in MMP-1 mRNA expression (less than twofold expression, within the laboratory range of fluctuation) detectable with the sensitive methods applied. Additionally, repeated exposure of human skin fibroblasts to wIRA(+RL) did not induce MMP-1 mRNA expression systematically (less than twofold expression by up to 10 consecutive wIRA(+RL) exposures and analysis with real-time RT-PCR). CONCLUSIONS: wIRA(+RL) even at the investigated disproportionally high irradiances does not induce cell death or a systematic increase of MMP-1 mRNA expression, both of which can be easily induced by UV-A radiation. Furthermore, these results support previous findings of in vivo investigations on collagenase induction by UV-A but not wIRA and show that infrared-A with appropriate irradiances does not seem to be involved in MMP-1 mediated photoaging of the skin. As suggested by previously published studies wIRA could even be implicated in a protective manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Life on earth is rhythmic by essence due to day/night alternation, and many biological processes are also cyclic. The kidney has a special role in the organism, controlling electrolytes and water balance, blood pressure, elimination of metabolic waste and xenobiotics and the production of several hormones. The kidney is submitted to changes throughout 24 h with periods of intense activity followed by calmer periods. Filtration, reabsorption and secretion are the three components determining renal function. Here, we review circadian changes related to glomerular function and proteinuria and emphasize the role of the clock in these processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detecting the action of selection in natural populations can be achieved using the QST-FST comparison that relies on the estimation of FST with neutral markers, and QST using quantitative traits potentially under selection. QST higher than FST suggests the action of directional selection and thus potential local adaptation. In this article, we apply the QST-FST comparison to four populations of the hermaphroditic freshwater snail Radix balthica located in a floodplain habitat. In contrast to most studies published so far, we did not detect evidence of directional selection for local optima for any of the traits we measured: QST calculated using three different methods was never higher than FST. A strong inbreeding depression was also detected, indicating that outcrossing is probably predominant over selfing in the studied populations. Our results suggest that in this floodplain habitat, local adaptation of R. balthica populations may be hindered by genetic drift, and possibly altered by uneven gene flow linked to flood frequency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vertebrates, early brain development takes place at the expanded anterior end of the neural tube, which is filled with embryonic cerebrospinal fluid (E-CSF). We have recently identified a transient blood-CSF barrier that forms between embryonic days E3 and E4 in chick embryos and that is responsible for the transport of proteins and control of E-CSF homeostasis, including osmolarity. Here we examined the presence of glucose transporter GLUT-1 as well the presence of caveolae-structural protein Caveolin1 (CAV-1) in the embryonic blood-CSF barrier which may be involved in the transport of glucose and of proteins, water and ions respectively across the neuroectoderm. In this paper we demonstrate the presence of GLUT-1 and CAV-1 in endothelial cells of blood vessels as well as in adjacent neuroectodermal cells, located in the embryonic blood-CSF barrier. In blood vessels, these proteins were detected as early as E4 in chick embryos and E12.7 in rat embryos, i.e. the point at which the embryonic blood-CSF barrier acquires this function. In the neuroectoderm of the embryonic blood-CSF barrier, GLUT-1 was also detected at E4 and E12.7 respectively, and CAV-1 was detected shortly thereafter in both experimental models. These experiments contribute to delineating the extent to which the blood-CSF embryonic barrier controls E-CSF composition and homeostasis during early stages of brain development in avians and mammals. Our results suggest the regulation of glucose transport to the E-CSF by means of GLUT-1 and also suggest a mechanism by which proteins are transported via transcellular routes across the neuroectoderm, thus reinforcing the crucial role of E-CSF in brain development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics simulations were performed to study the ion and water distribution around a spherical charged nanoparticle. A soft nanoparticle model was designed using a set of hydrophobic interaction sites distributed in six concentric spherical layers. In order to simulate the effect of charged functionalyzed groups on the nanoparticle surface, a set of charged sites were distributed in the outer layer. Four charged nanoparticle models, from a surface charge value of −0.035 Cm−2 to − 0.28 Cm−2, were studied in NaCl and CaCl2 salt solutions at 1 M and 0.1 M concentrations to evaluate the effect of the surface charge, counterion valence, and concentration of added salt. We obtain that Na + and Ca2 + ions enter inside the soft nanoparticle. Monovalent ions are more accumulated inside the nanoparticle surface, whereas divalent ions are more accumulated just in the plane of the nanoparticle surface sites. The increasing of the the salt concentration has little effect on the internalization of counterions, but significantly reduces the number of water molecules that enter inside the nanoparticle. The manner of distributing the surface charge in the nanoparticle (uniformly over all surface sites or discretely over a limited set of randomly selected sites) considerably affects the distribution of counterions in the proximities of the nanoparticle surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation is based on four articles dealing with modeling of ozonation. The literature part of this considers some models for hydrodynamics in bubble column simulation. A literature review of methods for obtaining mass transfer coefficients is presented. The methods presented to obtain mass transfer are general models and can be applied to any gas-liquid system. Ozonation reaction models and methods for obtaining stoichiometric coefficients and reaction rate coefficients for ozonation reactions are discussed in the final section of the literature part. In the first article, ozone gas-liquid mass transfer into water in a bubble column was investigated for different pH values. A more general method for estimation of mass transfer and Henry’s coefficient was developed from the Beltrán method. The ozone volumetric mass transfer coefficient and the Henry’s coefficient were determined simultaneously by parameter estimation using a nonlinear optimization method. A minor dependence of the Henry’s law constant on pH was detected at the pH range 4 - 9. In the second article, a new method using the axial dispersion model for estimation of ozone self-decomposition kinetics in a semi-batch bubble column reactor was developed. The reaction rate coefficients for literature equations of ozone decomposition and the gas phase dispersion coefficient were estimated and compared with the literature data. The reaction order in the pH range 7-10 with respect to ozone 1.12 and 0.51 the hydroxyl ion were obtained, which is in good agreement with literature. The model parameters were determined by parameter estimation using a nonlinear optimization method. Sensitivity analysis was conducted using object function method to obtain information about the reliability and identifiability of the estimated parameters. In the third article, the reaction rate coefficients and the stoichiometric coefficients in the reaction of ozone with the model component p-nitrophenol were estimated at low pH of water using nonlinear optimization. A novel method for estimation of multireaction model parameters in ozonation was developed. In this method the concentration of unknown intermediate compounds is presented as a residual COD (chemical oxygen demand) calculated from the measured COD and the theoretical COD for the known species. The decomposition rate of p-nitrophenol on the pathway producing hydroquinone was found to be about two times faster than the p-nitrophenol decomposition rate on the pathway producing 4- nitrocatechol. In the fourth article, the reaction kinetics of p-nitrophenol ozonation was studied in a bubble column at pH 2. Using the new reaction kinetic model presented in the previous article, the reaction kinetic parameters, rate coefficients, and stoichiometric coefficients as well as the mass transfer coefficient were estimated with nonlinear estimation. The decomposition rate of pnitrophenol was found to be equal both on the pathway producing hydroquinone and on the path way producing 4-nitrocathecol. Comparison of the rate coefficients with the case at initial pH 5 indicates that the p-nitrophenol degradation producing 4- nitrocathecol is more selective towards molecular ozone than the reaction producing hydroquinone. The identifiability and reliability of the estimated parameters were analyzed with the Marcov chain Monte Carlo (MCMC) method. @All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the author.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders, and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compared the U. gibba genome with that of four other eudicot species, defining a total of 17,324 gene families (orthogroups). These families were further classified as either 1) lineage-specific expanded/contracted or 2) stable in size. The U. gibba-expanded families are generically related to three main phenotypic features: 1) trap physiology, 2) key plant morphogenetic/developmental pathways, and 3) response to environmental stimuli, including adaptations to life in aquatic environments. Further scans for signatures of protein functional specialization permitted identification of seven candidate genes with amino acid changes putatively fixed by positive Darwinian selection in the U. gibba lineage. The Arabidopsis orthologs of these genes (AXR, UMAMIT41, IGS, TAR2, SOL1, DEG9, and DEG10) are involved in diverse plant biological functions potentially relevant for U. gibba phenotypic diversification, including 1) auxin metabolism and signal transduction, 2) flowering induction and floral meristem transition, 3) root development, and 4) peptidases. Taken together, our results suggest numerous candidate genes and gene families as interesting targets for further experimental confirmation of their functional and adaptive roles in the U. gibba's unique lifestyle and highly specialized body plan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, we report the formation of organized mesoporous silica materials prepared from a novel nonionic gemini surfactant, myristoyl-end capped Jeffamine, synthesized from a polyoxyalkyleneamine (ED900). The behavior of the modified Jeffamine in water was first investigated. A direct micellar phase (L1) and a hexagonal (H1) liquid crystal were found. The structure of the micelles was investigated from the SAXS and the analysis by Generalized Indirect Fourier Transformation (GIFT), which show that the particles are globular of coreshell type. The myristoyl chains, located at the ends of the amphiphile molecule are assembled to form the core of the micelles and, as a consequence, the molecules are folded over on themselves. Mesoporous materials were then synthesized from the self-assembly mechanism. The recovered materials were characterized by SAXS measurements, nitrogen adsorptiondesorption analysis, transmission and scanning electron microscopy. The results clearly evidence that by modifying the synthesis parameters, such as the surfactant/silica precursor molar ratio and the hydrothermal conditions, one can control the size and the nanostructuring of the resulting material. It was observed that, the lower the temperature of the hydrothermal treatment, the better the mesopore ordering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure and hydration of the HNP-3 have been derived from molecular dynamics data using root mean square deviation, radial and energy distributions. Three antiparallel beta sheets were found to be preserved. 15 intramolecular hydrogen bonds were identified together with 36 hydrogen bonds on the backbone and 35 on the side chain atoms. From the point of view of the hydration dynamics, the analysis shows a high solvent accessibility of the monomer and attractive interactions with water molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The triterpenoids oleanolic (OA) and ursolic (UA) acids show non-selective antiinflamatory activity in vitro for cyclooxygenase (COX) isoforms. 3D conformations of OA and UA, with three possible orientations (1, 1' and 2) in the active site of isoforms COX, obtained by docking, were submitted to molecular dynamics. The results show that orientation 2 of the OA in COX-2 is more favorable because orientation 1 moved away from the active site. The carboxylate group of OA interact by hydrogen bonds with Ser353 and with Phe357 and Leu359, mediated by water, while hydroxyl in C-3 interact by hydrogen bond, mediated by water, with Tyr385.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water-soluble CdTe quantum dots are synthesized to investigate how short-chain surface ligands bearing -SH, -COOH, and -NH2 groups interact with CdTe during nucleation/growth processes. Their optical properties and colloidal stability after the ligand exchange are also investigated. We then characterize the resulting CdTe by fluorescence, UV–Vis absorption, and infrared spectroscopies. The stability of the colloidal dispersions was determined by their Zeta potentials. The results show that in the synthesis of water-soluble CdTe, surface ligands with at least two functional groups are required and the hard/soft character of them is an important factor in the stability of CdTe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, proton NMR relaxometry was used to measure the behavior of spin-lattice relaxation time with T1H as the time constant, and also of spin-spin relaxation time with the time constant T2H. These relaxometry parameters were determined to better understand the changes in the main structures present in commercial and in nature forms of origanum. The T1H relaxation data showed that the structures which had higher molecular mass were more sensitive to degradation with increased temperature treatment. According to the values of the T2H parameter, up to 150 degrees no significant change in the mobility and organization of water was observed. These data infer that the ideal cooking temperature and tea preparation mode for this herb should be around 100 degrees for the sample not to lose its characteristics. Also, it is not advisable to cook this herb at higher than 150 degrees but better to consume it at room temperature, especially give commercial herb has already been dehydrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidized starch is a key component in the paper industry, where it is used as both surfacing sizer and filler. Large quantities are annually used for this purpose; however, the methods for the oxidation are not environmentally friendly. In our research, we have studied the possibility to replace the harmful oxidation agents, such as hypochlorite or iodates and transition metal catalysts, with a more environmentally friendly oxidant, hydrogen peroxide (H2O2), and a special metal complex catalyst (FePcS), of which only a small amount is needed. The work comprised batch and semi-batch studies by H2O2, ultrasound studies of starch particles, determination of low-molecular by-products and determination of the decomposition kinetics of H2O2 in the presence of starch and the catalyst. This resulted in a waste-free oxidation method, which only produces water and oxygen as side products. The starch oxidation was studied in both semi-batch and batch modes in respective to the oxidant (H2O2) addition. The semi-batch mode proved to yield a sufficient degree of substitution (COOH groups) for industrial purposes. Treatment of starch granules by ultrasound was found to improve the reactivity of starch. The kinetic results were found out to have a rather complex pattern – several oxidation phases were observed, apparently due to the fact that the oxidation reaction in the beginning only took place on the surface, whereas after a prolonged reaction time, partial degradation of the solid starch granules allowed further reaction in the interior parts. Batch-mode experiments enabled a more detailed study of the mechanisms of starch in the presence of H2O2 and the catalyst, but yielded less oxidized starch due to rapid decomposition of H2O2 due to its high concentrations. The effect of the solid-liquid (S/L) ratio in the reaction system was studied in batch experiments. These studies revealed that the presence of the catalyst and the starch enhance the H2O2 decomposition.