958 resultados para Molecular biology|Microbiology|Oceanography
Resumo:
To identify more mutations that can affect the early development of Myxococcus xanthus, the synthetic transposon TnT41 was designed and constructed. By virtue of its special features, it can greatly facilitate the processes of mutation screening/selection, mapping, cloning and DNA sequencing. In addition, it allows for the systematic discovery of genes in regulatory hierarchies using their target promoters. In this study, the minimal regulatory region of the early developmentally regulated gene 4521 was used as a reporter in the TnT41 mutagenesis. Both positive (P) mutations and negative (N) mutations were isolated based on their effects on 4521 expression.^ Four of these mutations, i.e. N1, N2, P52 and P54 were analyzed in detail. Mutations N1 and N2 are insertion mutations in a gene designated sasB. The sasB gene is also identified in this study by genetic and molecular analysis of five UV-generated 4521 suppressor mutations. The sasB gene encodes a protein without meaningful homology in the databases. The sasB gene negatively regulates 4521 expression possibly through the SasS-SasR two component system. A wild-type sasB gene is required for normal M. xanthus fruiting body formation and sporulation.^ Cloning and sequencing analysis of the P52 mutation led to the identification of an operon that encodes the M. xanthus high-affinity branched-chain amino acid transporter system. This liv operon consists of five genes designated livK, livH, livM, livC, and livF, respectively. The Liv proteins are highly similar to their counterparts from other bacteria in both amino acid sequences, functional motifs and predicted secondary structures. This system is required for development since liv null mutations cause abnormality in fruiting body formation and a 100-fold decrease in sporulation efficiency.^ Mutation P54 is a TnT41 insertion in the sscM gene of the ssc chemotaxis system, which has been independently identified by Dr. Shi's lab. The sscM gene encodes a MCP (methyl-accepting chemotaxis protein) homologue. The SscM protein is predicted to contain two transmembrane domains, a signaling domain and at least one putative methylation site. Null mutations of this gene abolish the aggregation of starving cells at a very early stage, though the sporulation levels of the mutant can reach 10% that of wild-type cells. ^
Resumo:
The thiol tripeptides, glutathione (GSH) and homoglutathione (hGSH), perform multiple roles in legumes, including protection against toxicity of free radicals and heavy metals. The three genes involved in the synthesis of GSH and hGSH in the model legume, Lotus japonicus, have been fully characterized and appear to be present as single copies in the genome. The gamma-glutamylcysteine synthetase (gammaecs) gene was mapped on the long arm of chromosome 4 (70.0 centimorgans [cM]) and consists of 15 exons, whereas the glutathione synthetase (gshs) and homoglutathione synthetase (hgshs) genes were mapped on the long arm of chromosome 1 (81.3 cM) and found to be arranged in tandem, with a separation of approximately 8 kb. Both genes consist of 12 exons of exactly the same size (except exon 1, which is similar). Two types of transcripts were detected for the gshs gene, which putatively encode proteins localized in the plastids and cytosol. Promoter regions contain cis-acting regulatory elements that may be involved in the plant's response to light, hormones, and stress. Determination of transcript levels, enzyme activities, and thiol contents in nodules, roots, and leaves revealed that gammaecs and hgshs are expressed in all three plant organs, whereas gshs is significantly functional only in nodules. This strongly suggests an important role of GSH in the rhizobia-legume symbiosis.
Resumo:
Molecular tools for the species-specific detection of Gluconacetobacter sacchari, Gluconacetobacter diazotrophicus, and Gluconacetobacter liquefaciens from the pink sugarcane mealybug (PSMB) Saccharicoccus sacchari Cockerell (Homiptera: Pseudococcidae) were developed and used in polymerase chain reactions (PCR) and in fluorescence in situ hybridizations (FISH) to better understand the microbial diversity and the numerical significance of the acetic acid bacteria in the PSMB microenvironment. The presence of these species in the PSMB occurred over a wide range of sites, but not in all sites in sugarcane-growing areas of Queensland, Australia, and was variable over time. Molecular probes for use in FISH were also designed for the three acetic acid bacterial species, and shown to be specific only for the target species. Use of these probes in FISH of squashed whole mealybugs indicated that these acetic acid bacteria species represent only a small proportion of the microbial population of the PSMB. Despite the detection of Glac. sacchari, Glac. diazotrophicus, and Glac. liquefaciens by PCR from different mealybugs isolated at various times and from various sugarcane-growing areas in Queensland, Australia, these bacteria do not appear to be significant commensals in the PSMB environment.
Resumo:
We have determined the three-dimensional structure of the protein complex between latexin and carboxypeptidase A using a combination of chemical cross-linking, mass spectrometry and molecular docking. The locations of three intermolecular cross-links were identified using mass spectrometry and these constraints were used in combination with a speed-optimised docking algorithm allowing us to evaluate more than 3 x 10(11) possible conformations. While cross-links represent only limited structural constraints, the combination of only three experimental cross-links with very basic molecular docking was sufficient to determine the complex structure. The crystal structure of the complex between latexin and carboxypeptidase A4 determined recently allowed us to assess the success of this structure determination approach. Our structure was shown to be within 4 angstrom r.m.s. deviation of C alpha atoms of the crystal structure. The study demonstrates that cross-linking in combination with mass spectrometry can lead to efficient and accurate structural modelling of protein complexes.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Bacterial colonization of the upper respiratory tract is the first step in the pathogenesis of nontypeable Haemophilus influenzae (NTHi) disease. Examination of the determinants of NTHi colonization process has been hampered by the lack of an appropriate animal model. To address this, we have developed a model of NTHi colonization in adult rhesus macaques that involves intranasal inoculation of 1x105 CFU and results in persistent colonization of the upper respiratory tract for at least three weeks with no signs of disease, mimicking asymptomatic colonization of humans. Using this model, we assessed the contributions to colonization of the HMW1 and HMW2 adhesive proteins. In competition experiments, the parent strain expressing both HMW1 and HMW2 was able to efficiently out-compete an isogenic mutant strain expressing neither HMW1 nor HMW2. In experiments involving inoculation of single isogenic derivatives of NTHi strain 12, the strains expressing HMW1 or HMW2 or both were able to colonize efficiently, while the strain expressing neither HMW1 nor HMW2 colonized inefficiently. Furthermore, colonization resulted in antibody production against HMW1 and HMW2 in one-third of the animals, demonstrating that colonization can be an immunizing event. In conclusion, we have established that NTHi is capable of colonizing the upper respiratory tract of rhesus macaques, in some cases associated with stimulation of an immune response. The HMW1 and HMW2 adhesive proteins play a major role in the process of colonization.
After establishing that the HMW1 and HMW2 proteins are colonization factors we further investigated the determinants of HMW1 function. HMW1 is encoded in the same genetic locus as two other proteins, HMW1B and HMW1C, with which HMW1 must interact in order to be functional. Interaction with HMW1C in the cytoplasm results in the glycosylation of HMW1. By employing homologues of HMW1C that glycosylate HMW1 in slightly different patterns we show that the pattern of modification is critical to HMW1 function. Structural analysis showed a change in protein structure when the pattern of HMW1 modification differed. We also identified two specific sites which must be glycosylated for HMW1 to function properly. These point mutations did not have a significant effect on protein structure, suggesting that glycosylation at those specific sites is instead necessary for interaction of HMW1 with its receptor. HMW1B is an outer membrane pore through which HMW1 is transported to reach the bacterial cell surface. We observed that HMW1 isolated from the cytoplasm has a different structure than HMW1 isolated from the bacterial cell surface. By forcing HMW1 to be secreted in a non-HMW1B dependent manner, we show that secretion alone is not sufficient for HMW1 to obtain a functional structure. This leads us to hypothesize that there is something specific in the interaction between HMW1 and HMW1B that aids in proper HMW1 folding.
The NTHi HMW1C glycosyltransferase mediates unconventional N-linked glycosylation of HMW1. In this system, HMW1 is modified in the cytoplasm by sequential transfer of hexose residues. To determine if this mechanism of N-linked glycosylation is employed by species other than NTHi, we examined Kingella kingae and Aggregatibacter aphrophilus homologues of HMW1C. We found both homologues to be functional glycosyltransferases and identified their substrates as the K. kingae Knh and the A. aphrophilus EmaA trimeric autotransporter proteins. LC-MS/MS analysis revealed multiple sites of N-linked glycosylation on Knh and EmaA. Without glycosylation, Knh and EmaA failed to facilitate wild type levels of bacterial autoaggregation or adherence to human epithelial cells, establishing that glycosylation is essential for proper protein function.
Resumo:
Eighteen Corynebacterium xerosis strains isolated from different animal clinical specimens were subjected to phenotypic and molecular genetic studies. On the basis of the results of the biochemical characterization, the strains were tentatively identified as C. xerosis. Phylogenetic analysis based on comparative analysis of the sequences of 16S rRNA and rpoB genes revealed that the 18 strains were highly related to C. xerosis, C. amycolatum, C. freneyi, and C. hansenii. There was a good concordance between 16S rRNA and partial rpoB gene sequencing results, although partial rpoB gene sequencing allowed better differentiation of C. xerosis. Alternatively, C. xerosis was also differentiated from C. freneyi and C. amycolatum by restriction fragment length polymorphism analysis of the 16S-23S rRNA gene intergenic spacer region. Phenotypic characterization indicated that besides acid production from D-turanose and 5-ketogluconate, 90% of the strains were able to reduce nitrate. The absence of the fatty acids C(14:0), C(15:0), C(16:1)omega 7c, and C(17:1)omega 8c can also facilitate the differentiation of C. xerosis from closely related species. The results of the present investigation demonstrated that for reliable identification of C. xerosis strains from clinical samples, a combination of phenotypic and molecular-biology-based identification techniques is necessary.
Resumo:
Myosin is believed to act as the molecular motor for many actin-based motility processes in eukaryotes. It is becoming apparent that a single species may possess multiple myosin isoforms, and at least seven distinct classes of myosin have been identified from studies of animals, fungi, and protozoans. The complexity of the myosin heavy-chain gene family in higher plants was investigated by isolating and characterizing myosin genomic and cDNA clones from Arabidopsis thaliana. Six myosin-like genes were identified from three polymerase chain reaction (PCR) products (PCR1, PCR11, PCR43) and three cDNA clones (ATM2, MYA2, MYA3). Sequence comparisons of the deduced head domains suggest that these myosins are members of two major classes. Analysis of the overall structure of the ATM2 and MYA2 myosins shows that they are similar to the previously-identified ATM1 and MYA1 myosins, respectively. The MYA3 appears to possess a novel tail domain, with five IQ repeats, a six-member imperfect repeat, and a segment of unique sequence. Northern blot analyses indicate that some of the Arabidopsis myosin genes are preferentially expressed in different plant organs. Combined with previous studies, these results show that the Arabidopsis genome contains at least eight myosin-like genes representing two distinct classes.
Time dependency of molecular rate estimates and systematic overestimation of recent divergence times
Resumo:
Studies of molecular evolutionary rates have yielded a wide range of rate estimates for various genes and taxa. Recent studies based on population-level and pedigree data have produced remarkably high estimates of mutation rate, which strongly contrast with substitution rates inferred in phylogenetic (species-level) studies. Using Bayesian analysis with a relaxed-clock model, we estimated rates for three groups of mitochondrial data: avian protein-coding genes, primate protein-coding genes, and primate d-loop sequences. In all three cases, we found a measurable transition between the high, short-term (<1–2 Myr) mutation rate and the low, long-term substitution rate. The relationship between the age of the calibration and the rate of change can be described by a vertically translated exponential decay curve, which may be used for correcting molecular date estimates. The phylogenetic substitution rates in mitochondria are approximately 0.5% per million years for avian protein-coding sequences and 1.5% per million years for primate protein-coding and d-loop sequences. Further analyses showed that purifying selection offers the most convincing explanation for the observed relationship between the estimated rate and the depth of the calibration. We rule out the possibility that it is a spurious result arising from sequence errors, and find it unlikely that the apparent decline in rates over time is caused by mutational saturation. Using a rate curve estimated from the d-loop data, several dates for last common ancestors were calculated: modern humans and Neandertals (354 ka; 222–705 ka), Neandertals (108 ka; 70–156 ka), and modern humans (76 ka; 47–110 ka). If the rate curve for a particular taxonomic group can be accurately estimated, it can be a useful tool for correcting divergence date estimates by taking the rate decay into account. Our results show that it is invalid to extrapolate molecular rates of change across different evolutionary timescales, which has important consequences for studies of populations, domestication, conservation genetics, and human evolution.
Resumo:
The genomes of an Australian and a Canadian isolate of potato leafroll virus have been cloned and sequenced. The sequences of both isolates are similar (about 93%), but the Canadian isolate (PLRV-C) is more closely related (about 98% identity) to a Scottish (PLRV-S) and a Dutch isolate (PLRV-N) than to the Australian isolate (PLRV-A). The 5'-terminal 18 nucleotide residues of PLRV-C, PLRV-A, PLRV-N and beet western yellows virus have 17 residues in common. In contrast, PLRV-S shows no obvious similarity in this region. PLRV-A and PLRV-C genomic sequences have localized regions of marked diversity, in particular a 600 nucleotide residue sequence in the polymerase gene. These data provide a world-wide perspective on the molecular biology of PLRV strains and their comparison with other luteoviruses and related RNA plant viruses suggests that there are two major subgroups in the plant luteoviruses.
Resumo:
Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.
Resumo:
Homologous recombination mediated by RAD51 recombinase helps eliminate chromosomal lesions, such as DNA double-strand breaks induced by radiation or arising from injured DNA replication forks. The tumor suppressors BRCA2 and PALB2 act together to deliver RAD51 to chromosomal lesions to initiate repair. Here we document a new function of PALB2: to enhance RAD51's ability to form the D loop. We show that PALB2 binds DNA and physically interacts with RAD51. Notably, although PALB2 alone stimulates D-loop formation, it has a cooperative effect with RAD51AP1, an enhancer of RAD51. This stimulation stems from the ability of PALB2 to function with RAD51 and RAD51AP1 to assemble the synaptic complex. Our results demonstrate the multifaceted role of PALB2 in chromosome damage repair. Because PALB2 mutations can cause cancer or Fanconi anemia, our findings shed light on the mechanism of tumor suppression in humans.
Resumo:
Homologous recombination (HR) reactions mediated by the RAD51 recombinase are essential for DNA and replication fork repair, genome stability, and tumor suppression. RAD51-associated protein 1 (RAD51AP1) is an important HR factor that associates with and stimulates the recombinase activity of RAD51. We have recently shown that RAD51AP1 also partners with the meiotic recombinase DMC1, displaying isoform-specific interactions with DMC1. Here, we have characterized the DMC1 interaction site in RAD51AP1 by a series of truncations and point mutations to uncover a highly conserved WVPP motif critical for DMC1 interaction but dispensable for RAD51 association. This RAD51AP1 motif is reminiscent of the FVPP motif in the tumor suppressor protein BRCA2 that mediates DMC1 interaction. These results further implicate RAD51AP1 in meiotic HR via RAD51 and DMC1.
Resumo:
Homologous recombination catalyzed by the RAD51 recombinase is essential for maintaining genome integrity upon the induction of DNA double strand breaks and other DNA lesions. By enhancing the recombinase activity of RAD51, RAD51AP1 (RAD51-associated protein 1) serves a key role in homologous recombination-mediated chromosome damage repair. We show here that RAD51AP1 harbors two distinct DNA binding domains that are both needed for maximal protein activity under physiological conditions. We have finely mapped the two DNA binding domains in RAD51AP1 and generated mutant variants that are impaired in either or both of the DNA binding domains. Examination of these mutants reveals that both domains are indispensable for RAD51AP1 function in cells. These and other results illuminate the mechanistic basis of RAD51AP1 action in homologous DNA repair.