967 resultados para Modulation (Electronics)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

RTUWO Advances in Wireless and Optical Communications 2015 (RTUWO 2015). 5-6 Nov Riga, Latvia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Software tools in education became popular since the widespread of personal computers. Engineering courses lead the way in this development and these tools became almost a standard. Engineering graduates are familiar with numerical analysis tools but also with simulators (e.g. electronic circuits), computer assisted design tools and others, depending on the degree. One of the main problems with these tools is when and how to start use them so that they can be beneficial to students and not mere substitutes for potentially difficult calculations or design. In this paper a software tool to be used by first year students in electronics/electricity courses is presented. The growing acknowledgement and acceptance of open source software lead to the choice of an open source software tool – Scilab, which is a numerical analysis tool – to develop a toolbox. The toolbox was developed to be used as standalone or integrated in an e-learning platform. The e-learning platform used was Moodle. The first approach was to assess the mathematical skills necessary to solve all the problems related to electronics and electricity courses. Analysing the existing circuit simulators software tools, it is clear that even though they are very helpful by showing the end result they are not so effective in the process of the students studying and self learning since they show results but not intermediate steps which are crucial in problems that involve derivatives or integrals. Also, they are not very effective in obtaining graphical results that could be used to elaborate reports and for an overall better comprehension of the results. The developed tool was based on the numerical analysis software Scilab and is a toolbox that gives their users the opportunity to obtain the end results of a circuit analysis but also the expressions obtained when derivative and integrals calculations, plot signals, obtain vector diagrams, etc. The toolbox runs entirely in the Moodle web platform and provides the same results as the standalone application. The students can use the toolbox through the web platform (in computers where they don't have installation privileges) or in their personal computers by installing both the Scilab software and the toolbox. This approach was designed for first year students from all engineering degrees that have electronics/electricity courses in their curricula.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slowed atrial conduction may contribute to reentry circuits and vulnerability for atrial fibrillation (AF). The autonomic nervous system (ANS) has modulating effects on electrophysiological properties. However, complex interactions of the ANS with the arrhythmogenic substrate make it difficult to understand the mechanisms underlying induction and maintenance of AF. AIM: To determine the effect of acute ANS modulation in atrial activation times in patients (P) with paroxysmal AF (PAF). METHODS AND RESULTS: 16P (9 men; 59±14years) with PAF, who underwent electrophysiological study before AF ablation, and 15P (7 men; 58±11years) with atrioventricular nodal reentry tachycardia, without documentation or induction of AF (control group). Each group included 7P with arterial hypertension but without underlying structural heart disease. The study was performed while off drugs. Multipolar catheters were placed at the high right atrium (HRA), right atrial appendage (RAA), coronary sinus (CS) and His bundle area (His). At baseline and with HRA pacing (600ms, shortest propagated S2) we measured: i) intra-atrial conduction time (IACT, between RAA and atrial deflection in the distal His), ii) inter-atrial conduction time (interACT, between RAA and distal CS), iii) left atrial activation time (LAAT, between atrial deflection in the distal His and distal CS), iv) bipolar electrogram duration at four atrial sites (RAA, His, proximal and distal CS). In the PAF group, measurements were also determined during handgrip and carotid sinus massage (CSM), and after pharmacological blockade of the ANS (ANSB). AF was induced by HRA programmed stimulation in 56% (self-limited - 6; sustained - 3), 68.8% (self-limited - 6; sustained - 5), and 50% (self-limited - 5; sustained - 3) of the P, in basal, during ANS maneuvers, and after ANSB, respectively (p=NS). IACT, interACT and LAAT significantly lengthened during HRA pacing in both groups (600ms, S2). P with PAF have longer IACT (p<0.05), a higher increase in both IACT, interACT (p<0.01) and electrograms duration (p<0.05) with S2, and more fragmented activity, compared with the control group. Atrial conduction times and electrograms duration were not significantly changed during ANS stimulation. Nevertheless, ANS maneuvers increased heterogeneity of the local electrograms duration. Also, P with sustained AF showed longer interACT and LAAT during CSM. CONCLUSION: Atrial conduction times, electrograms duration and fractionated activity are increased in PAF, suggesting a role for conduction delays in the arrhythmogenic substrate. Acute vagal stimulation is associated with prolonged interACT and LAAT in P with inducible sustained AF and ANS modulation may influence the heterogeneity of atrial electrograms duration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To contribute to the validation of the sensory and behavioral criteria for Regulation Disorders of Sensory Processing (RDSP) (DC:0-3R, 2005), this study examined a sample of toddlers in a clinical setting to analyze: (1) the severity of sensory modulation deficits and the behavioral symptoms of RDSP; (2) the associations between sensory and behavioral symptoms; and (3) the specific role of sensory modulation deficits in an RDSP diagnosis. Based on clinical observations, 78 toddlers were classified into two groups: toddlers with RDSP (N = 18) and those with‘‘other diagnoses in Axis I/II of the DC:0-3R’’ (OD3R; N = 60). The parents completed the Infant Toddler Sensory Profile and the Achenbach Checklist. The results revealed that the RDSP group had more severe sensory modulation deficits and specific behavioral symptoms; stronger, although not significant, associations between most sensory and behavioral symptoms; and a significant sensory modulation deficit effect. These findings support the validity of RDSP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

J Biol Inorg Chem (2006) 11: 307–315 DOI 10.1007/s00775-005-0077-2

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation to obtain the Master Degree in Biotechnology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mice previously infected with Schistosoma mansoni, and cured by specific treatment (400mg/kg oxamniquine, p. o.) in the chronic phase of the disease, were reinfected 20 days after treatment to assess their capacityfor modulation ofthe granulomatous response. Histopathologic examination of the animals ' liver, at 60 days after reinfection, evidenced the presence of typical granulomas of the chronic phase in most animals. This infer that the capacity for modulation of the granulomatous response had been maintained, thus preventing a new acute phase of the disease. Conversely, a group of previously infected mice, untreated and submitted to reinfection, showed reactivation of the granulomatous response in 50% of the animals. The possible implications of these findings in human schistosomiasis mansoni are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use, manipulation and application of electrical currents, as a controlled interference mechanism in the human body system, is currently a strong source of motivation to researchers in areas such as clinical, sports, neuroscience, amongst others. In electrical stimulation (ES), the current applied to tissue is traditionally controlled concerning stimulation amplitude, frequency and pulse-width. The main drawbacks of the transcutaneous ES are the rapid fatigue induction and the high discomfort induced by the non-selective activation of nervous fibers. There are, however, electrophysiological parameters whose response, like the response to different stimulation waveforms, polarity or a personalized charge control, is still unknown. The study of the following questions is of great importance: What is the physiological effect of the electric pulse parametrization concerning charge, waveform and polarity? Does the effect change with the clinical condition of the subjects? The parametrization influence on muscle recruitment can retard fatigue onset? Can parametrization enable fiber selectivity, optimizing the motor fibers recruitment rather than the nervous fibers, reducing contraction discomfort? Current hardware solutions lack flexibility at the level of stimulation control and physiological response assessment. To answer these questions, a miniaturized, portable and wireless controlled device with ES functions and full integration with a generic biosignals acquisition platform has been created. Hardware was also developed to provide complete freedom for controlling the applied current with respect to the waveform, polarity, frequency, amplitude, pulse-width and duration. The impact of the methodologies developed is successfully applied and evaluated in the contexts of fundamental electrophysiology, psycho-motor rehabilitation and neuromuscular disorders diagnosis. This PhD project was carried out in the Physics Department of Faculty of Sciences and Technology (FCT-UNL), in straight collaboration with PLUX - Wireless Biosignals S.A. company and co-funded by the Foundation for Science and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work project focuses on developing new approaches which enhance Portuguese exports towards a defined German industry sector within the information technology and electronics fields. Firstly and foremost, information was collected and a set of expert and top managers’ interviews were performed in order to acknowledge the demand of the German market while identifying compatible Portuguese supply capabilities. Among the main findings, Industry 4.0 presents itself as a valuable opportunity in the German market for Portuguese medium sized companies in the embedded systems area of expertise for machinery and equipment companies. In order to achieve the purpose of the work project, an embedded systems platform targeting machinery and equipment companies was suggested as well as it was developed several recommendations on how to implement it. An alternative approach for this platform was also considered within the German market namely the eHealth sector having the purpose of enhancing the current healthcare service provision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, cellulose-based electro and ionic conductive composites were developed for application in cellulose based printed electronics. Electroconductive inks were successfully formulated for screen-printing using carbon fibers (CFs) and multi-walled carbon nanotubes (MWCNTs) as conductive functional material and cellulose derivatives working as binder. The formulated inks were used to fabricate conductive flexible and disposable electrodes on paper-based substrates. Interesting results were obtained after 10 printing passes and drying at RT of the ink with 10 % wt. of pristine CFs and 3% wt. of carboxymethyl cellulose (CMC), exhibiting a resistivity of 1.03 Ωcm and a resolution of 400 μm. Also, a resistivity of 0.57 Ωcm was obtained for only one printing pass using an ink based on 0.5 % wt. MWCNTs and 3 % wt. CMC. It was also demonstrated that ionic conductive cellulose matrix hydrogel can be used in electrolyte-gated transistors (EGTs). The electrolytes revealed a double layer capacitance of 12.10 μFcm-2 and ionic conductivity of 3.56x10-7 Scm-1. EGTs with a planar configuration, using sputtered GIZO as semiconducting layer, reached an ON/OFF ratio of 3.47x105, a VON of 0.2 V and a charge carrier mobility of 2.32 cm2V-1s-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports the development of field-effect transistors (FETs), whose channel is based on zinc oxide (ZnO) nanoparticles (NPs). Using screen-printing as the primary deposition technique, different inks were developed, where the semiconducting ink is based on a ZnO NPs dispersion in ethyl cellulose (EC). These inks were used to print electrolyte-gated transistors (EGTs) in a staggered-top gate structure on glass substrates, using a lithium-based polymeric electrolyte. In another approach, FETs with a staggered-bottom gate structure on paper were developed using a sol-gel method to functionalize the paper’s surface with ZnO NPs, using zinc acetate dihydrate (ZnC4H6O4·2H2O) and sodium hydroxide (NaOH) as precursors. In this case, the paper itself was used as dielectric. The various layers of the two devices were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric and differential scanning calorimetric analyses (TG-DSC). Electrochemical impedance spectroscopy (EIS) was used in order to evaluate the electric double-layer (EDL) formation, in the case of the EGTs. The ZnO NPs EGTs present electrical modulation for annealing temperatures equal or superior to 300 ºC and in terms of electrical properties they showed On/Off ratios in the order of 103, saturation mobilities (μSat) of 1.49x10-1 cm2(Vs)-1 and transconductance (gm) of 10-5 S. On the other hand, the ZnO NPs FETs on paper exhibited On/Off ratios in the order of 102, μSat of 4.83x10- 3 cm2(Vs)-1and gm around 10-8 S.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the early nineties, Mark Weiser wrote a series of seminal papers that introduced the concept of Ubiquitous Computing. According to Weiser, computers require too much attention from the user, drawing his focus from the tasks at hand. Instead of being the centre of attention, computers should be so natural that they would vanish into the human environment. Computers become not only truly pervasive but also effectively invisible and unobtrusive to the user. This requires not only for smaller, cheaper and low power consumption computers, but also for equally convenient display solutions that can be harmoniously integrated into our surroundings. With the advent of Printed Electronics, new ways to link the physical and the digital worlds became available. By combining common printing techniques such as inkjet printing with electro-optical functional inks, it is starting to be possible not only to mass-produce extremely thin, flexible and cost effective electronic circuits but also to introduce electronic functionalities into products where it was previously unavailable. Indeed, Printed Electronics is enabling the creation of novel sensing and display elements for interactive devices, free of form factor. At the same time, the rise in the availability and affordability of digital fabrication technologies, namely of 3D printers, to the average consumer is fostering a new industrial (digital) revolution and the democratisation of innovation. Nowadays, end-users are already able to custom design and manufacture on demand their own physical products, according to their own needs. In the future, they will be able to fabricate interactive digital devices with user-specific form and functionality from the comfort of their homes. This thesis explores how task-specific, low computation, interactive devices capable of presenting dynamic visual information can be created using Printed Electronics technologies, whilst following an approach based on the ideals behind Personal Fabrication. Focus is given on the use of printed electrochromic displays as a medium for delivering dynamic digital information. According to the architecture of the displays, several approaches are highlighted and categorised. Furthermore, a pictorial computation model based on extended cellular automata principles is used to programme dynamic simulation models into matrix-based electrochromic displays. Envisaged applications include the modelling of physical, chemical, biological, and environmental phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this thesis aims at developing a new separation process based on the application of supported magnetic ionic liquid membranes, SMILMs, using magnetic ionic liquids, MILs. MILs have attracted growing interest due to their ability to change their physicochemical characteristics when exposed to variable magnetic field conditions. The magnetic responsive behavior of MILs is thus expected to contribute for the development of more efficient separation processes, such as supported liquid membranes, where MILs may be used as a selective carrier. Driven by the MILs behavior, these membranes are expected to switch reversibly their permeability and selectivity by in situ and non-invasive adjustment of the conditions (e.g. intensity, direction vector and uniformity) of an external applied magnetic field. The development of these magnetic responsive membrane processes were anticipated by studies, performed along the first stage of this PhD work, aiming at getting a deep knowledge on the influence of magnetic field on MILs properties. The influence of the magnetic field on the molecular dynamics and structural rearrangement of MILs ionic network was assessed through a 1H-NMR technique. Through the 1H-NMR relaxometry analysis it was possible to estimate the self-diffusion profiles of two different model MILs, [Aliquat][FeCl4] and [P66614][FeCl4]. A comparative analysis was established between the behavior of magnetic and non-magnetic ionic liquids, MILs and ILs, to facilitate the perception of the magnetic field impact on MILs properties. In contrast to ILs, MILs show a specific relaxation mechanism, characterized by the magnetic dependence of their self-diffusion coefficients. MILs self-diffusion coefficients increased in the presence of magnetic field whereas ILs self-diffusion was not affected. In order to understand the reasons underlying the magnetic dependence of MILs self-diffusion, studies were performed to investigate the influence of the magnetic field on MILs’ viscosity. It was observed that the MIL´s viscosity decreases with the increase of the magnetic field, explaining the increase of MILs self-diffusion according to the modified Stokes- Einstein equation. Different gas and liquid transport studies were therefore performed aiming to determine the influence of the magnetic behavior of MILs on solute transport through SMILMs. Gas permeation studies were performed using pure CO2 andN2 gas streams and air, using a series of phosphonium cation based MILs, containing different paramagnetic anions. Transport studies were conducted in the presence and absence of magnetic field at a maximum intensity of 1.5T. The results revealed that gas permeability increased in the presence of the magnetic field, however, without affecting the membrane selectivity. The increase of gas permeability through SMILMs was related to the decrease of the MILs viscosity under magnetic field conditions.(...)