876 resultados para Modeling Rapport Using Hidden Markov Models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study includes an analysis of the applicability of current models used for estimating the mechanical properties of conventional concrete to self-compacting concrete. The mechanical properties evaluated are: modulus of elasticity, tensile strength, and modulus of rupture. An extensive database which included the dosifications and the mechanical properties of 627 mixtures from 138 different references, was used. The models considered are: ACI, EC-2, NZS 3101:2006 (New Zealand code) and the CSA A23.3-04 (Canadian code). The precision in estimating the modulus of elasticity and tensile strength is acceptable for all models; however, all models are less precise in estimating the modulus of rupture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study is to analyze the applicability of current models used for estimating the mechanical properties of conventional concrete to self-consolidating concrete (SCC). The mechanical properties evaluated are modulus of elasticity, tensile strength,and modulus of rupture. As part of the study, it was necessary to build an extensive database that included the proportions and mechanical properties of 627 mixtures from 138 different references. The same models that are currently used for calculating the mechanical properties of conventional concrete were applied to SCC to evaluate their applicability to this type of concrete. The models considered are the ACI 318, ACI 363R, and EC2. These are the most commonly used models worldwide. In the first part of the study, the overall behavior and adaptability of the different models to SCC is evaluated. The specific characterization parameters for each concrete mixture are used to calculate the various mechanical properties applying the different estimation models. The second part of the analysis consists of comparing the experimental results of all the mixtures included in the database with the estimated results to evaluate the applicability of these models to SCC. Various statistical procedures, such as regression analysis and residual analysis, are used to compare the predicted and measured properties. It terms of general applicability, the evaluated models are suitable for estimating the modulus of elasticity, tensile strength, and modulus of rupture of SCC. These models have a rather low sensitivity, however, and adjust well only to mean values. This is because the models use the compressive strength as the main variable to characterize the concrete and do not consider other variables that affect these properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although most of the research on Cognitive Radio is focused on communication bands above the HF upper limit (30 MHz), Cognitive Radio principles can also be applied to HF communications to make use of the extremely scarce spectrum more efficiently. In this work we consider legacy users as primary users since these users transmit without resorting to any smart procedure, and our stations using the HFDVL (HF Data+Voice Link) architecture as secondary users. Our goal is to enhance an efficient use of the HF band by detecting the presence of uncoordinated primary users and avoiding collisions with them while transmitting in different HF channels using our broad-band HF transceiver. A model of the primary user activity dynamics in the HF band is developed in this work to make short-term predictions of the sojourn time of a primary user in the band and avoid collisions. It is based on Hidden Markov Models (HMM) which are a powerful tool for modelling stochastic random processes and are trained with real measurements of the 14 MHz band. By using the proposed HMM based model, the prediction model achieves an average 10.3% prediction error rate with one minute-long channel knowledge but it can be reduced when this knowledge is extended: with the previous 8 min knowledge, an average 5.8% prediction error rate is achieved. These results suggest that the resulting activity model for the HF band could actually be used to predict primary users activity and included in a future HF cognitive radio based station.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n this article, a tool for simulating the channel impulse response for indoor visible light communications using 3D computer-aided design (CAD) models is presented. The simulation tool is based on a previous Monte Carlo ray-tracing algorithm for indoor infrared channel estimation, but including wavelength response evaluation. The 3D scene, or the simulation environment, can be defined using any CAD software in which the user specifies, in addition to the setting geometry, the reflection characteristics of the surface materials as well as the structures of the emitters and receivers involved in the simulation. Also, in an effort to improve the computational efficiency, two optimizations are proposed. The first one consists of dividing the setting into cubic regions of equal size, which offers a calculation improvement of approximately 50% compared to not dividing the 3D scene into sub-regions. The second one involves the parallelization of the simulation algorithm, which provides a computational speed-up proportional to the number of processors used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding spatial distributions and how environmental conditions influence catch-per-unit-effort (CPUE) is important for increased fishing efficiency and sustainable fisheries management. This study investigated the relationship between CPUE, spatial factors, temperature, and depth using generalized additive models. Combinations of factors, and not one single factor, were frequently included in the best model. Parameters which best described CPUE varied by geographic region. The amount of variance, or deviance, explained by the best models ranged from a low of 29% (halibut, Charlotte region) to a high of 94% (sablefish, Charlotte region). Depth, latitude, and longitude influenced most species in several regions. On the broad geographic scale, depth was associated with CPUE for every species, except dogfish. Latitude and longitude influenced most species, except halibut (Areas 4 A/D), sablefish, and cod. Temperature was important for describing distributions of halibut in Alaska, arrowtooth flounder in British Columbia, dogfish, Alaska skate, and Aleutian skate. The species-habitat relationships revealed in this study can be used to create improved fishing and management strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transportation Department, Office of the Assistant Secretary for Systems Development and Technology, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"August 1981."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims [1] To quantify the random and predictable components of variability for aminoglycoside clearance and volume of distribution [2] To investigate models for predicting aminoglycoside clearance in patients with low serum creatinine concentrations [3] To evaluate the predictive performance of initial dosing strategies for achieving an aminoglycoside target concentration. Methods Aminoglycoside demographic, dosing and concentration data were collected from 697 adult patients (>=20 years old) as part of standard clinical care using a target concentration intervention approach for dose individualization. It was assumed that aminoglycoside clearance had a renal and a nonrenal component, with the renal component being linearly related to predicted creatinine clearance. Results A two compartment pharmacokinetic model best described the aminoglycoside data. The addition of weight, age, sex and serum creatinine as covariates reduced the random component of between subject variability (BSVR) in clearance (CL) from 94% to 36% of population parameter variability (PPV). The final pharmacokinetic parameter estimates for the model with the best predictive performance were: CL, 4.7 l h(-1) 70 kg(-1); intercompartmental clearance (CLic), 1 l h(-1) 70 kg(-1); volume of central compartment (V-1), 19.5 l 70 kg(-1); volume of peripheral compartment (V-2) 11.2 l 70 kg(-1). Conclusions Using a fixed dose of aminoglycoside will achieve 35% of typical patients within 80-125% of a required dose. Covariate guided predictions increase this up to 61%. However, because we have shown that random within subject variability (WSVR) in clearance is less than safe and effective variability (SEV), target concentration intervention can potentially achieve safe and effective doses in 90% of patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wurst is a protein threading program with an emphasis on high quality sequence to structure alignments (http://www.zbh.uni-hamburg.de/wurst). Submitted sequences are aligned to each of about 3000 templates with a conventional dynamic programming algorithm, but using a score function with sophisticated structure and sequence terms. The structure terms are a log-odds probability of sequence to structure fragment compatibility, obtained from a Bayesian classification procedure. A simplex optimization was used to optimize the sequence-based terms for the goal of alignment and model quality and to balance the sequence and structural contributions against each other. Both sequence and structural terms operate with sequence profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine whether the choice of client fishes in the cleaner fish Labroides dimidiatus was influenced by client size, cleaner fish were given a choice of equal amount of food spread on large and small client redfin butterflyfish Chaetodon trifasciatus models. All large models received bites from cleaners compared to 27% for small models. Seventy-nine per cent of cleaners took their first bite from the large fish model. The results suggest that client size may affect cleaner fish choice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to complex field/tissue interactions, high-field magnetic resonance (MR) images suffer significant image distortions that result in compromised diagnostic quality. A new method that attempts to remove these distortions is proposed in this paper and is based on the use of transceiver-phased arrays. The proposed system uses, in the examples presented herein, a shielded four-element transceive-phased array head coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both the images together, the image distortion can be reduced several fold. A combined hybrid method of moments (MoM)/finite element method (FEM) and finite-difference time-domain (FDTD) technique is proposed and used to elucidate the concept of the new method and to accurately evaluate the electromagnetic field (EMF) in a human head model. In addition, the proposed method is used in conjunction with the generalized auto-calibrating partially parallel acquisitions (GRAPPA) reconstruction technique to enable rapid imaging of the two scans. Simulation results reported herein for 11-T (470-MHz) brain imaging applications show that the new method with GRAPPA reconstruction theoretically results in improved image quality and that the proposed combined hybrid MoM/FEM and FDTD technique is. suitable for high-field magnetic resonance imaging (MRI) numerical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most traditional methods for extracting the relationships between two time series are based on cross-correlation. In a non-linear non-stationary environment, these techniques are not sufficient. We show in this paper how to use hidden Markov models (HMMs) to identify the lag (or delay) between different variables for such data. We first present a method using maximum likelihood estimation and propose a simple algorithm which is capable of identifying associations between variables. We also adopt an information-theoretic approach and develop a novel procedure for training HMMs to maximise the mutual information between delayed time series. Both methods are successfully applied to real data. We model the oil drilling process with HMMs and estimate a crucial parameter, namely the lag for return.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dipeptides can be absorbed into cells via the dipeptide transporter (which also transported tripeptides and dipeptide derivatives). The optimum conditions for measuring the inhibition of Gly-Pro uptake in Caco-2 cells were identified. A number of structure-activity relationships were identified. These included the effects of increasing the amino-acid chain-length, and the presence of a thiol or hydroxyl group in the side-chain increased IC50 while the presence of a hydroxyl group did not. The benzyl esters had lower or equal IC50 values compared to the parent dipeptides while the methyl esters had higher values. These results indicated that while molecular properties did affect IC50, the size, charge and composition of three particular groups caused the most significant effects, supporting the structure-activity relationship identified. An assay was developed using calcein-AM to show the inhibition of p-glycoprotein activity. There was no significant change due to the presence of mannitol but there was in the presence of clyclosporin A (p<0.01). Incubating the cells with the test solution for 30 minutes before the addition of the ester resulted in a significant (p<0.001) difference. The assay was specific for p-glycoprotein, as the presence MRP inhibitors had no effect (p>0.05). The modified protocol allowed the identification of p-glycoprotein inhibitors quickly and simply using a cell suspension of unmodified cells. The clinically relevant buffering of grapefruit juice to pH 7 led to a four-fold increase in intracellular calcein and hence significant inhibition of p-glycoprotein. Buffered orange and lemon juices had no effect on the assay. Flavone derivatives had previously been found to be inhibitors of CYP3A4 yet neither naringin nor naringenin had any significant effect at concentrations found in grapefruit juice. Of the other (non-grapefruit) flavone derivatives tested, hesperidin, found in orange juice, had no significant effect, kaempferol and rutin also had no effect while genistein significantly inhibited p-glycoprotein (results that support previous studies). Hydroxycinnamic acids had no effect on p-glycoprotein. Studies on other compounds found that the balance between inhibiting p-glycoprotein and disrupting cell membranes depends on the compound containing an oxygen atom and the size of the negative charge on it, as well as three-dimensional arrangement of the atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This empirical study employs a different methodology to examine the change in wealth associated with mergers and acquisitions (M&As) for US firms. Specifically, we employ the standard CAPM, the Fama-French three-factor model and the Carhart four-factor models within the OLS and GJR-GARCH estimation methods to test the behaviour of the cumulative abnormal returns (CARs). Whilst the standard CAPM captures the variability of stock returns with the overall market, the Fama-French factors capture the risk factors that are important to investors. Additionally, augmenting the Fama-French three-factor model with the Carhart momentum factor to generate the four-factor captures additional pricing elements that may affect stock returns. Traditionally, estimates of abnormal returns (ARs) in M&As situations rely on the standard OLS estimation method. However, the standard OLS will provide inefficient estimates of the ARs if the data contain ARCH and asymmetric effects. To minimise this problem of estimation efficiency we re-estimated the ARs using GJR-GARCH estimation method. We find that there is variation in the results both as regards the choice models and estimation methods. Besides these variations in the estimated models and the choice of estimation methods, we also tested whether the ARs are affected by the degree of liquidity of the stocks and the size of the firm. We document significant positive post-announcement cumulative ARs (CARs) for target firm shareholders under both the OLS and GJR-GARCH methods across all three methodologies. However, post-event CARs for acquiring firm shareholders were insignificant for both sets of estimation methods under the three methodologies. The GJR-GARCH method seems to generate larger CARs than those of the OLS method. Using both market capitalization and trading volume as a measure of liquidity and the size of the firm, we observed strong return continuations in the medium firms relative to small and large firms for target shareholders. We consistently observed market efficiency in small and large firm. This implies that target firms for small and large firms overreact to new information resulting in a more efficient market. For acquirer firms, our measure of liquidity captures strong return continuations for small firms under the OLS estimates for both CAPM and Fama-French three-factor models, whilst under the GJR-GARCH estimates only for Carhart model. Post-announcement bootstrapping simulated CARs confirmed our earlier results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a hybrid generative/discriminative framework for semantic parsing which combines the hidden vector state (HVS) model and the hidden Markov support vector machines (HM-SVMs). The HVS model is an extension of the basic discrete Markov model in which context is encoded as a stack-oriented state vector. The HM-SVMs combine the advantages of the hidden Markov models and the support vector machines. By employing a modified K-means clustering method, a small set of most representative sentences can be automatically selected from an un-annotated corpus. These sentences together with their abstract annotations are used to train an HVS model which could be subsequently applied on the whole corpus to generate semantic parsing results. The most confident semantic parsing results are selected to generate a fully-annotated corpus which is used to train the HM-SVMs. The proposed framework has been tested on the DARPA Communicator Data. Experimental results show that an improvement over the baseline HVS parser has been observed using the hybrid framework. When compared with the HM-SVMs trained from the fully-annotated corpus, the hybrid framework gave a comparable performance with only a small set of lightly annotated sentences. © 2008. Licensed under the Creative Commons.