919 resultados para Model-based Categorical Sequence Clustering
Resumo:
BACKGROUND: Short-acting agents for neuromuscular block (NMB) require frequent dosing adjustments for individual patient's needs. In this study, we verified a new closed-loop controller for mivacurium dosing in clinical trials. METHODS: Fifteen patients were studied. T1% measured with electromyography was used as input signal for the model-based controller. After induction of propofol/opiate anaesthesia, stabilization of baseline electromyography signal was awaited and a bolus of 0.3 mg kg-1 mivacurium was then administered to facilitate endotracheal intubation. Closed-loop infusion was started thereafter, targeting a neuromuscular block of 90%. Setpoint deviation, the number of manual interventions and surgeon's complaints were recorded. Drug use and its variability between and within patients were evaluated. RESULTS: Median time of closed-loop control for the 11 patients included in the data processing was 135 [89-336] min (median [range]). Four patients had to be excluded because of sensor problems. Mean absolute deviation from setpoint was 1.8 +/- 0.9 T1%. Neither manual interventions nor complaints from the surgeons were recorded. Mean necessary mivacurium infusion rate was 7.0 +/- 2.2 microg kg-1 min-1. Intrapatient variability of mean infusion rates over 30-min interval showed high differences up to a factor of 1.8 between highest and lowest requirement in the same patient. CONCLUSIONS: Neuromuscular block can precisely be controlled with mivacurium using our model-based controller. The amount of mivacurium needed to maintain T1% at defined constant levels differed largely between and within patients. Closed-loop control seems therefore advantageous to automatically maintain neuromuscular block at constant levels.
Resumo:
Research on rehabilitation showed that appropriate and repetitive mechanical movements can help spinal cord injured individuals to restore their functional standing and walking. The objective of this paper was to achieve appropriate and repetitive joint movements and approximately normal gait through the PGO by replicating normal walking, and to minimize the energy consumption for both patients and the device. A model based experimental investigative approach is presented in this dissertation. First, a human model was created in Ideas and human walking was simulated in Adams. The main feature of this model was the foot ground contact model, which had distributed contact points along the foot and varied viscoelasticity. The model was validated by comparison of simulated results of normal walking and measured ones from the literature. It was used to simulate current PGO walking to investigate the real causes of poor function of the current PGO, even though it had joint movements close to normal walking. The direct cause was one leg moving at a time, which resulted in short step length and no clearance after toe off. It can not be solved by simply adding power on both hip joints. In order to find a better answer, a PGO mechanism model was used to investigate different walking mechanisms by locking or releasing some joints. A trade-off between energy consumption, control complexity and standing position was found. Finally a foot release PGO virtual model was created and simulated and only foot release mechanism was developed into a prototype. Both the release mechanism and the design of foot release were validated through the experiment by adding the foot release on the current PGO. This demonstrated an advancement in improving functional aspects of the current PGO even without a whole physical model of foot release PGO for comparison.
Resumo:
With a steady increase of regulatory requirements for business processes, automation support of compliance management is a field garnering increasing attention in Information Systems research. Several approaches have been developed to support compliance checking of process models. One major challenge for such approaches is their ability to handle different modeling techniques and compliance rules in order to enable widespread adoption and application. Applying a structured literature search strategy, we reflect and discuss compliance-checking approaches in order to provide an insight into their generalizability and evaluation. The results imply that current approaches mainly focus on special modeling techniques and/or a restricted set of types of compliance rules. Most approaches abstain from real-world evaluation which raises the question of their practical applicability. Referring to the search results, we propose a roadmap for further research in model-based business process compliance checking.
Resumo:
Radon plays an important role for human exposure to natural sources of ionizing radiation. The aim of this article is to compare two approaches to estimate mean radon exposure in the Swiss population: model-based predictions at individual level and measurement-based predictions based on measurements aggregated at municipality level. A nationwide model was used to predict radon levels in each household and for each individual based on the corresponding tectonic unit, building age, building type, soil texture, degree of urbanization, and floor. Measurement-based predictions were carried out within a health impact assessment on residential radon and lung cancer. Mean measured radon levels were corrected for the average floor distribution and weighted with population size of each municipality. Model-based predictions yielded a mean radon exposure of the Swiss population of 84.1 Bq/m(3) . Measurement-based predictions yielded an average exposure of 78 Bq/m(3) . This study demonstrates that the model- and the measurement-based predictions provided similar results. The advantage of the measurement-based approach is its simplicity, which is sufficient for assessing exposure distribution in a population. The model-based approach allows predicting radon levels at specific sites, which is needed in an epidemiological study, and the results do not depend on how the measurement sites have been selected.
Resumo:
Given a reproducing kernel Hilbert space (H,〈.,.〉)(H,〈.,.〉) of real-valued functions and a suitable measure μμ over the source space D⊂RD⊂R, we decompose HH as the sum of a subspace of centered functions for μμ and its orthogonal in HH. This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the best predictor can be elegantly derived, either in an interpolation or regularization framework. The proposed kernels appear to be particularly convenient for analyzing the effect of each (group of) variable(s) and computing sensitivity indices without recursivity.
Resumo:
PURPOSE Segmentation of the proximal femur in digital antero-posterior (AP) pelvic radiographs is required to create a three-dimensional model of the hip joint for use in planning and treatment. However, manually extracting the femoral contour is tedious and prone to subjective bias, while automatic segmentation must accommodate poor image quality, anatomical structure overlap, and femur deformity. A new method was developed for femur segmentation in AP pelvic radiographs. METHODS Using manual annotations on 100 AP pelvic radiographs, a statistical shape model (SSM) and a statistical appearance model (SAM) of the femur contour were constructed. The SSM and SAM were used to segment new AP pelvic radiographs with a three-stage approach. At initialization, the mean SSM model is coarsely registered to the femur in the AP radiograph through a scaled rigid registration. Mahalanobis distance defined on the SAM is employed as the search criteria for each annotated suggested landmark location. Dynamic programming was used to eliminate ambiguities. After all landmarks are assigned, a regularized non-rigid registration method deforms the current mean shape of SSM to produce a new segmentation of proximal femur. The second and third stages are iteratively executed to convergence. RESULTS A set of 100 clinical AP pelvic radiographs (not used for training) were evaluated. The mean segmentation error was [Formula: see text], requiring [Formula: see text] s per case when implemented with Matlab. The influence of the initialization on segmentation results was tested by six clinicians, demonstrating no significance difference. CONCLUSIONS A fast, robust and accurate method for femur segmentation in digital AP pelvic radiographs was developed by combining SSM and SAM with dynamic programming. This method can be extended to segmentation of other bony structures such as the pelvis.