948 resultados para Model driven developments


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We compared lifetime and population energy budgets of the extraordinary long-lived ocean quahog Arctica islandica from 6 different sites - the Norwegian coast, Kattegat, Kiel Bay, White Sea, German Bight, and off northeast Iceland - covering a temperature and salinity gradient of 4-10°C (annual mean) and 25-34, respectively. Based on von Bertalanffy growth models and size-mass relationships, we computed organic matter production of body (PSB) and of shell (PSS), whereas gonad production (PG) was estimated from the seasonal cycle in mass. Respiration (R) was computed by a model driven by body mass, temperature, and site. A. islandica populations differed distinctly in maximum life span (40 y in Kiel Bay to 197 y in Iceland), but less in growth performance (phi' ranged from 2.41 in the White Sea to 2.65 in Kattegat). Individual lifetime energy throughput, as approximated by assimilation, was highest in Iceland (43,730 kJ) and lowest in the White Sea (313 kJ). Net growth efficiency ranged between 0.251 and 0.348, whereas lifetime energy investment distinctly shifted from somatic to gonad production with increasing life span; PS/PG decreased from 0.362 (Kiel Bay, 40 y) to 0.031 (Iceland, 197 y). Population annual energy budgets were derived from individual budgets and estimates of population mortality rate (0.035/y in Iceland to 0.173/y in Kiel Bay). Relationships between budget ratios were similar on the population level, albeit with more emphasis on somatic production; PS/ PG ranged from 0.196 (Iceland) to 2.728 (White Sea), and P/B ranged from 0.203-0.285/y. Life span is the principal determinant of the relationship between budget parameters, whereas temperature affects net growth efficiency only. In the White Sea population, both growth performance and net growth efficiency of A. islandica were lowest. We presume that low temperature combined with low salinity represent a particularly stressful environment for this species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Service-Oriented Architectures (SOA), and Web Services (WS), the technology generally used to implement them, achieve the integration of heterogeneous technologies, providing interoperability, and yielding the reutilization of pre-existent systems. Model-driven development methodologies provide inherent benefits such as increased productivity, greater reuse, and better maintainability, to name a few. Efforts on achieving model-driven development of SOAs already exist, but there is currently no standard solution that addresses non-functional aspects of these services as well. This paper presents an approach to integrate these non-functional aspects in the development of web services, with an emphasis on security.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Embedded systems are commonly designed by specifying and developing hardware and software systems separately. On the contrary, the hardware/software (HW/SW) co-development exploits the trade-offs between hardware and software in a system through their concurrent design. HW/SW Codevelopment techniques take advantage of the flexibility of system design to create architectures that can meet stringent performance requirements with a shorter design cycle. This paper presents the work done within the scope of ESA HWSWCO (Hardware-Software Co-design) study. The main objective of this study has been to address the HW/SW co-design phase to integrate this engineering task as part of the ASSERT process (refer to [1]) and compatible with the existing ASSERT approach, process and tool, Advances in the automation of the design of HW and SW and the adoption of the Model Driven Architecture (MDA) [9] paradigm make possible the definition of a proper integration substrate and enables the continuous interaction of the HW and SW design paths.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

How to create or integrate large Smart Spaces (considered as mash-ups of sensors and actuators) into the paradigm of ?Web of Things? has been the motivation of many recent works. A cutting-edge approach deals with developing and deploying web-enabled embedded devices with two major objectives: 1) to integrate sensor and actuator technologies into everyday objects, and 2) to allow a diversity of devices to plug to Internet. Currently, developers who want to use this Internet-oriented approach need have solid understanding about sensorial platforms and semantic technologies. In this paper we propose a Resource-Oriented and Ontology-Driven Development (ROOD) methodology, based on Model Driven Architecture (MDA), to facilitate to any developer the development and deployment of Smart Spaces. Early evaluations of the ROOD methodology have been successfully accomplished through a partial deployment of a Smart Hotel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Usability plays an important role to satisfy users? needs. There are many recommendations in the HCI literature on how to improve software usability. Our research focuses on such recommendations that affect the system architecture rather than just the interface. However, improving software usability in aspects that affect architecture increases the analyst?s workload and development complexity. This paper proposes a solution based on model-driven development. We propose representing functional usability mechanisms abstractly by means of conceptual primitives. The analyst will use these primitives to incorporate functional usability features at the early stages of the development process. Following the model-driven development paradigm, these features are then automatically transformed into subsequent steps of development, a practice that is hidden from the analyst.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The characterisation of mineral texture has been a major concern for process mineralogists, as liberation characteristics of the ores are intimately related to the mineralogical texture. While a great effort has been done to automatically characterise texture in unbroken ores, the characterisation of textural attributes in mineral particles is usually descriptive. However, the quantitative characterisation of texture in mineral particles is essential to improve and predict the performance of minerallurgical processes (i.e. all the processes involved in the liberation and separation of the mineral of interest) and to achieve a more accurate geometallurgical model. Driven by this necessity of achieving a more complete characterisation of textural attributes in mineral particles, a methodology has been recently developed to automatically characterise the type of intergrowth between mineral phases within particles by means of digital image analysis. In this methodology, a set ofminerallurgical indices has been developed to quantify different mineralogical features and to identify the intergrowth pattern by discriminant analysis. The paper shows the application of the methodology to the textural characterisation of chalcopyrite in the rougher concentrate of the Kansanshi copper mine (Zambia). In this sample, the variety of intergrowth patterns of chalcopyrite with the other minerals has been used to illustrate the methodology. The results obtained show that the method identifies the intergrowth type and provides quantitative information to achieve a complete and detailed mineralogical characterisation. Therefore, the use of this methodology as a routinely tool in automated mineralogy would contribute to a better understanding of the ore behaviour during liberation and separation processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, organizations have plenty of data stored in DB databases, which contain invaluable information. Decision Support Systems DSS provide the support needed to manage this information and planning médium and long-term ?the modus operandi? of these organizations. Despite the growing importance of these systems, most proposals do not include its total evelopment, mostly limiting itself on the development of isolated parts, which often have serious integration problems. Hence, methodologies that include models and processes that consider every factor are necessary. This paper will try to fill this void as it proposes an approach for developing spatial DSS driven by the development of their associated Data Warehouse DW, without forgetting its other components. To the end of framing the proposal different Engineering Software focus (The Software Engineering Process and Model Driven Architecture) are used, and coupling with the DB development methodology, (and both of them adapted to DW peculiarities). Finally, an example illustrates the proposal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of mixed-criticality virtualized multicore systems poses new challenges that are being subject of active research work. There is an additional complexity: it is now required to identify a set of partitions, and allocate applications to partitions. In this job, a number of issues have to be considered, such as the criticality level of the application, security and dependability requirements, operating system used by the application, time requirements granularity, specific hardware needs, etc. MultiPARTES [6] toolset relies on Model Driven Engineering (MDE) [12], which is a suitable approach in this setting. In this paper, it is described the support provided for automatic system partitioning generation and toolset extensibility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of mixed-criticality virtualized multi-core systems poses new challenges that are being subject of active research work. There is an additional complexity: it is now required to identify a set of partitions, and allocate applications to partitions. In this job, a number of issues have to be considered, such as the criticality level of the application, security and dependability requirements, time requirements granularity, etc. MultiPARTES [11] toolset relies on Model Driven Engineering (MDE), which is a suitable approach in this setting, as it helps to bridge the gap between design issues and partitioning concerns. MDE is changing the way systems are developed nowadays, reducing development time. In general, modelling approaches have shown their benefits when applied to embedded systems. These benefits have been achieved by fostering reuse with an intensive use of abstractions, or automating the generation of boiler-plate code.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Los sistemas empotrados son cada día más comunes y complejos, de modo que encontrar procesos seguros, eficaces y baratos de desarrollo software dirigidos específicamente a esta clase de sistemas es más necesario que nunca. A diferencia de lo que ocurría hasta hace poco, en la actualidad los avances tecnológicos en el campo de los microprocesadores de los últimos tiempos permiten el desarrollo de equipos con prestaciones más que suficientes para ejecutar varios sistemas software en una única máquina. Además, hay sistemas empotrados con requisitos de seguridad (safety) de cuyo correcto funcionamiento depende la vida de muchas personas y/o grandes inversiones económicas. Estos sistemas software se diseñan e implementan de acuerdo con unos estándares de desarrollo software muy estrictos y exigentes. En algunos casos puede ser necesaria también la certificación del software. Para estos casos, los sistemas con criticidades mixtas pueden ser una alternativa muy valiosa. En esta clase de sistemas, aplicaciones con diferentes niveles de criticidad se ejecutan en el mismo computador. Sin embargo, a menudo es necesario certificar el sistema entero con el nivel de criticidad de la aplicación más crítica, lo que hace que los costes se disparen. La virtualización se ha postulado como una tecnología muy interesante para contener esos costes. Esta tecnología permite que un conjunto de máquinas virtuales o particiones ejecuten las aplicaciones con unos niveles de aislamiento tanto temporal como espacial muy altos. Esto, a su vez, permite que cada partición pueda ser certificada independientemente. Para el desarrollo de sistemas particionados con criticidades mixtas se necesita actualizar los modelos de desarrollo software tradicionales, pues estos no cubren ni las nuevas actividades ni los nuevos roles que se requieren en el desarrollo de estos sistemas. Por ejemplo, el integrador del sistema debe definir las particiones o el desarrollador de aplicaciones debe tener en cuenta las características de la partición donde su aplicación va a ejecutar. Tradicionalmente, en el desarrollo de sistemas empotrados, el modelo en V ha tenido una especial relevancia. Por ello, este modelo ha sido adaptado para tener en cuenta escenarios tales como el desarrollo en paralelo de aplicaciones o la incorporación de una nueva partición a un sistema ya existente. El objetivo de esta tesis doctoral es mejorar la tecnología actual de desarrollo de sistemas particionados con criticidades mixtas. Para ello, se ha diseñado e implementado un entorno dirigido específicamente a facilitar y mejorar los procesos de desarrollo de esta clase de sistemas. En concreto, se ha creado un algoritmo que genera el particionado del sistema automáticamente. En el entorno de desarrollo propuesto, se han integrado todas las actividades necesarias para desarrollo de un sistema particionado, incluidos los nuevos roles y actividades mencionados anteriormente. Además, el diseño del entorno de desarrollo se ha basado en la ingeniería guiada por modelos (Model-Driven Engineering), la cual promueve el uso de los modelos como elementos fundamentales en el proceso de desarrollo. Así pues, se proporcionan las herramientas necesarias para modelar y particionar el sistema, así como para validar los resultados y generar los artefactos necesarios para el compilado, construcción y despliegue del mismo. Además, en el diseño del entorno de desarrollo, la extensión e integración del mismo con herramientas de validación ha sido un factor clave. En concreto, se pueden incorporar al entorno de desarrollo nuevos requisitos no-funcionales, la generación de nuevos artefactos tales como documentación o diferentes lenguajes de programación, etc. Una parte clave del entorno de desarrollo es el algoritmo de particionado. Este algoritmo se ha diseñado para ser independiente de los requisitos de las aplicaciones así como para permitir al integrador del sistema implementar nuevos requisitos del sistema. Para lograr esta independencia, se han definido las restricciones al particionado. El algoritmo garantiza que dichas restricciones se cumplirán en el sistema particionado que resulte de su ejecución. Las restricciones al particionado se han diseñado con una capacidad expresiva suficiente para que, con un pequeño grupo de ellas, se puedan expresar la mayor parte de los requisitos no-funcionales más comunes. Las restricciones pueden ser definidas manualmente por el integrador del sistema o bien pueden ser generadas automáticamente por una herramienta a partir de los requisitos funcionales y no-funcionales de una aplicación. El algoritmo de particionado toma como entradas los modelos y las restricciones al particionado del sistema. Tras la ejecución y como resultado, se genera un modelo de despliegue en el que se definen las particiones que son necesarias para el particionado del sistema. A su vez, cada partición define qué aplicaciones deben ejecutar en ella así como los recursos que necesita la partición para ejecutar correctamente. El problema del particionado y las restricciones al particionado se modelan matemáticamente a través de grafos coloreados. En dichos grafos, un coloreado propio de los vértices representa un particionado del sistema correcto. El algoritmo se ha diseñado también para que, si es necesario, sea posible obtener particionados alternativos al inicialmente propuesto. El entorno de desarrollo, incluyendo el algoritmo de particionado, se ha probado con éxito en dos casos de uso industriales: el satélite UPMSat-2 y un demostrador del sistema de control de una turbina eólica. Además, el algoritmo se ha validado mediante la ejecución de numerosos escenarios sintéticos, incluyendo algunos muy complejos, de más de 500 aplicaciones. ABSTRACT The importance of embedded software is growing as it is required for a large number of systems. Devising cheap, efficient and reliable development processes for embedded systems is thus a notable challenge nowadays. Computer processing power is continuously increasing, and as a result, it is currently possible to integrate complex systems in a single processor, which was not feasible a few years ago.Embedded systems may have safety critical requirements. Its failure may result in personal or substantial economical loss. The development of these systems requires stringent development processes that are usually defined by suitable standards. In some cases their certification is also necessary. This scenario fosters the use of mixed-criticality systems in which applications of different criticality levels must coexist in a single system. In these cases, it is usually necessary to certify the whole system, including non-critical applications, which is costly. Virtualization emerges as an enabling technology used for dealing with this problem. The system is structured as a set of partitions, or virtual machines, that can be executed with temporal and spatial isolation. In this way, applications can be developed and certified independently. The development of MCPS (Mixed-Criticality Partitioned Systems) requires additional roles and activities that traditional systems do not require. The system integrator has to define system partitions. Application development has to consider the characteristics of the partition to which it is allocated. In addition, traditional software process models have to be adapted to this scenario. The V-model is commonly used in embedded systems development. It can be adapted to the development of MCPS by enabling the parallel development of applications or adding an additional partition to an existing system. The objective of this PhD is to improve the available technology for MCPS development by providing a framework tailored to the development of this type of system and by defining a flexible and efficient algorithm for automatically generating system partitionings. The goal of the framework is to integrate all the activities required for developing MCPS and to support the different roles involved in this process. The framework is based on MDE (Model-Driven Engineering), which emphasizes the use of models in the development process. The framework provides basic means for modeling the system, generating system partitions, validating the system and generating final artifacts. The framework has been designed to facilitate its extension and the integration of external validation tools. In particular, it can be extended by adding support for additional non-functional requirements and support for final artifacts, such as new programming languages or additional documentation. The framework includes a novel partitioning algorithm. It has been designed to be independent of the types of applications requirements and also to enable the system integrator to tailor the partitioning to the specific requirements of a system. This independence is achieved by defining partitioning constraints that must be met by the resulting partitioning. They have sufficient expressive capacity to state the most common constraints and can be defined manually by the system integrator or generated automatically based on functional and non-functional requirements of the applications. The partitioning algorithm uses system models and partitioning constraints as its inputs. It generates a deployment model that is composed by a set of partitions. Each partition is in turn composed of a set of allocated applications and assigned resources. The partitioning problem, including applications and constraints, is modeled as a colored graph. A valid partitioning is a proper vertex coloring. A specially designed algorithm generates this coloring and is able to provide alternative partitions if required. The framework, including the partitioning algorithm, has been successfully used in the development of two industrial use cases: the UPMSat-2 satellite and the control system of a wind-power turbine. The partitioning algorithm has been successfully validated by using a large number of synthetic loads, including complex scenarios with more that 500 applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several languages have been proposed for the task of describing networks of systems, either to help on managing, simulate or deploy testbeds for testing purposes. However, there is no one specifically designed to describe the honeynets, covering the specific characteristics in terms of applications and tools included in the honeypot systems that make the honeynet. In this paper, the requirements of honeynet description are studied and a survey of existing description languages is presented, concluding that a CIM (Common Information Model) match the basic requirements. Thus, a CIM like technology independent honeynet description language (TIHDL) is proposed. The language is defined being independent of the platform where the honeynet will be deployed later, and it can be translated, either using model-driven techniques or other translation mechanisms, into the description languages of honeynet deployment platforms and tools. This approach gives flexibility to allow the use of a combination of heterogeneous deployment platforms. Besides, a flexible virtual honeynet generation tool (HoneyGen) based on the approach and description language proposed and capable of deploying honeynets over VNX (Virtual Networks over LinuX) and Honeyd platforms is presented for validation purposes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Los sistemas de búsqueda de respuestas (BR) se pueden considerar como potenciales sucesores de los buscadores tradicionales de información en la Web. Para que sean precisos deben adaptarse a dominios concretos mediante el uso de recursos semánticos adecuados. La adaptación no es una tarea trivial, ya que deben integrarse e incorporarse a sistemas de BR existentes varios recursos heterogéneos relacionados con un dominio restringido. Se presenta la herramienta Maraqa, cuya novedad radica en el uso de técnicas de ingeniería del software, como el desarrollo dirigido por modelos, para automatizar dicho proceso de adaptación a dominios restringidos. Se ha evaluado Maraqa mediante una serie de experimentos (sobre el dominio agrícola) que demuestran su viabilidad, mejorando en un 29,5% la precisión del sistema adaptado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context: Today’s project managers have a myriad of methods to choose from for the development of software applications. However, they lack empirical data about the character of these methods in terms of usefulness, ease of use or compatibility, all of these being relevant variables to assess the developer’s intention to use them. Objective: To compare three methods, each following a different paradigm (Model-Driven, Model-Based and Code-Centric) with respect to their adoption potential by junior software developers engaged in the development of the business layer of a Web 2.0 application. Method: We have conducted a quasi-experiment with 26 graduate students of the University of Alicante. The application developed was a Social Network, which was organized around a fixed set of modules. Three of them, similar in complexity, were used for the experiment. Subjects were asked to use a different method for each module, and then to answer a questionnaire that gathered their perceptions during such use. Results: The results show that the Model-Driven method is regarded as the most useful, although it is also considered the least compatible with previous developers’ experiences. They also show that junior software developers feel comfortable with the use of models, and that they are likely to use them if the models are accompanied by a Model-Driven development environment. Conclusions: Despite their relatively low level of compatibility, Model-Driven development methods seem to show a great potential for adoption. That said, however, further experimentation is needed to make it possible to generalize the results to a different population, different methods, other languages and tools, different domains or different application sizes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to explore clinician reactions to (i) the introduction of routine outcome measures and (ii) the utility of outcomes data in clinical practice. Focus group discussions (n = 34) were conducted with mental health staff (n = 324) at approximately 8 months post implementation of routine outcome measures. A semi-structured interview schedule was used to collect data on two key issues; reactions to the introduction of outcome measures and factors influencing the utility of outcomes data in clinical practice. Data from the discussion groups were analysed using content analysis to isolate emerging themes. While the majority of participants endorsed the collection and utilization of outcomes data, many raised questions about the merits of the initiative. Ambivalence, competing work demands, lack of support from senior medical staff, questionable evidence to support the use of outcome measures, and fear of how outcomes data might be used emerged as key issues. At 8 months post implementation a significant number of clinical staff remained ambivalent about the benefits of outcome measurement and had not engaged in the process. The shift to a service model driven by outcomes and case-mix data will take time and resources to achieve. Implications for nursing staff are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Meta-Object Facility (MOF) provides a standardized framework for object-oriented models. An instance of a MOF model contains objects and links whose interfaces are entirely derived from that model. Information contained in these objects can be accessed directly, however, in order to realize the Model-Driven Architecture@trade; (MDA), we must have a mechanism for representing and evaluating structured queries on these instances. The MOF Query Language (MQL) is a language that extends the UML's Object Constraint Language (OCL) to provide more expressive power, such as higher-order queries, parametric polymorphism and argument polymorphism. Not only do these features allow more powerful queries, but they also encourage a greater degree of modularization and re-use, resulting in faster prototyping and facilitating automated integrity analysis. This paper presents an overview of the motivations for developing MQL and also discusses its abstract syntax, presented as a MOF model, and its semantics