926 resultados para Modèle de location
Resumo:
Low corporate taxes can help attract new firms. This is the main mechanism underpinning the standard 'race-to-the-bottom'view of tax competition. A recent theoretical literature has qualified this view by formalizing the argument that agglomeration forces can reduce firms' sensitivity to tax differentials across locations. We test this proposition using data on firm startups across Swiss municipalities. We find that, on average, high corporate income taxes do deter new firms, but that this relationship is significantly weaker in the most spatially concentrated sectors. Location choices of firms in sectors with an agglomeration intensity at the twentieth percentile of the sample distribution are estimated to be twice as responsive to a given difference in local corporate tax burdens as firms in sectors with an agglomeration intensity at the eightieth percentile. Hence, our analysis confirms the theoretical prediction: agglomeration economies can neutralize the impact of tax differentials on firms' location choices.
Resumo:
The optimal location of services is one of the most important factors that affects service quality in terms of consumer access. On theother hand, services in general need to have a minimum catchment area so as to be efficient. In this paper a model is presented that locates the maximum number of services that can coexist in a given region without having losses, taking into account that they need a minimum catchment area to exist. The objective is to minimize average distance to the population. The formulation presented belongs to the class of discrete P--median--like models. A tabu heuristic method is presented to solve the problem. Finally, the model is applied to the location of pharmacies in a rural region of Spain.
Resumo:
The Maximum Capture problem (MAXCAP) is a decision model that addresses the issue of location in a competitive environment. This paper presents a new approach to determine which store s attributes (other than distance) should be included in the newMarket Capture Models and how they ought to be reflected using the Multiplicative Competitive Interaction model. The methodology involves the design and development of a survey; and the application of factor analysis and ordinary least squares. Themethodology has been applied to the supermarket sector in two different scenarios: Milton Keynes (Great Britain) and Barcelona (Spain).
Resumo:
We offer a formulation that locates hubs on a network in a competitiveenvironment; that is, customer capture is sought, which happenswhenever the location of a new hub results in a reduction of thecurrent cost (time, distance) needed by the traffic that goes from thespecified origin to the specified destination.The formulation presented here reduces the number of variables andconstraints as compared to existing covering models. This model issuited for both air passenger and cargo transportation.In this model, each origin-destination flow can go through either oneor two hubs, and each demand point can be assigned to more than a hub,depending on the different destinations of its traffic. Links(``spokes'' have no capacity limit. Computational experience is provided.
Resumo:
Previous covering models for emergency service consider all the calls to be of the sameimportance and impose the same waiting time constraints independently of the service's priority.This type of constraint is clearly inappropriate in many contexts. For example, in urban medicalemergency services, calls that involve danger to human life deserve higher priority over calls formore routine incidents. A realistic model in such a context should allow prioritizing the calls forservice.In this paper a covering model which considers different priority levels is formulated andsolved. The model heritages its formulation from previous research on Maximum CoverageModels and incorporates results from Queuing Theory, in particular Priority Queuing. Theadditional complexity incorporated in the model justifies the use of a heuristic procedure.
Resumo:
When dealing with the design of service networks, such as healthand EMS services, banking or distributed ticket selling services, thelocation of service centers has a strong influence on the congestion ateach of them, and consequently, on the quality of service. In this paper,several models are presented to consider service congestion. The firstmodel addresses the issue of the location of the least number of single--servercenters such that all the population is served within a standard distance,and nobody stands in line for a time longer than a given time--limit, or withmore than a predetermined number of other clients. We then formulateseveral maximal coverage models, with one or more servers per service center.A new heuristic is developed to solve the models and tested in a 30--nodesnetwork.
Resumo:
The past four decades have witnessed an explosive growth in the field of networkbased facilitylocation modeling. This is not at all surprising since location policy is one of the mostprofitable areas of applied systems analysis in regional science and ample theoretical andapplied challenges are offered. Location-allocation models seek the location of facilitiesand/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or severalobjectives generally related to the efficiency of the system or to the allocation of resources.This paper concerns the location of facilities or services in discrete space or networks, thatare related to the public sector, such as emergency services (ambulances, fire stations, andpolice units), school systems and postal facilities. The paper is structured as follows: first,we will focus on public facility location models that use some type of coverage criterion,with special emphasis in emergency services. The second section will examine models based onthe P-Median problem and some of the issues faced by planners when implementing thisformulation in real world locational decisions. Finally, the last section will examine newtrends in public sector facility location modeling.
Resumo:
The state of Vaud model of the pre-hospital chain of survival is an example of an efficient way to deal with pre-hospital emergencies. It revolves around a centrally located dispatch center managing emergencies according to specific key words, allowing dispatchers to send out resources among which we find general practitioners, ambulances, physician staffed fast response cars or physician staffed helicopters and specific equipment. The Vaud pre-hospital chain of survival has been tailored according to geographical, demographical and political necessities. It undergoes constant reassessment and needs continuous adaptations to the ever changing demographics and epidemiology of pre-hospital medicine.
Resumo:
The paper presents a new model based on the basic Maximum Capture model,MAXCAP. The New Chance Constrained Maximum Capture modelintroduces astochastic threshold constraint, which recognises the fact that a facilitycan be open only if a minimum level of demand is captured. A metaheuristicbased on MAX MIN ANT system and TABU search procedure is presented tosolve the model. This is the first time that the MAX MIN ANT system isadapted to solve a location problem. Computational experience and anapplication to 55 node network are also presented.
Resumo:
A new direction of research in Competitive Location theory incorporatestheories of Consumer Choice Behavior in its models. Following thisdirection, this paper studies the importance of consumer behavior withrespect to distance or transportation costs in the optimality oflocations obtained by traditional Competitive Location models. To dothis, it considers different ways of defining a key parameter in thebasic Maximum Capture model (MAXCAP). This parameter will reflectvarious ways of taking into account distance based on several ConsumerChoice Behavior theories. The optimal locations and the deviation indemand captured when the optimal locations of the other models are usedinstead of the true ones, are computed for each model. A metaheuristicbased on GRASP and Tabu search procedure is presented to solve all themodels. Computational experience and an application to 55-node networkare also presented.
Resumo:
Il est admis que l'endocardite infectieuse devrait faire l'objet d'une prophylaxie antibiotique du fait d'une morbidité et d'une mortalité non négligeables. Le choix de cette prophylaxie repose sur l'identification (i) des patients à risque, (ii) des interventions médico-chirurgicales pouvant provoquer une bactériémie, (iii) du régime prophylactique le plus efficace et (iv) du rapport entre le risque des effets secondaires des médicaments et celui de développer une endocardite infectieuse. Les patients à risque et les interventions médico-chirurgicales provoquant une bactériémie ont été identifiés par des études cliniques. En revanche, l'efficacité de la prophylaxie n'est fondée que sur les résultats de modèles animaux. L'expérimentation animale a contribué à une meilleure connaissance des mécanismes de pathogenèse de l'endocardite infectieuse. Elle a permis de comprendre le mode d'action des antibiotiques dans la prévention des endocardites infectieuses et de jeter les bases d'une antibioprophylaxie raisonnée et adaptée aux différents patients à risque. It is commonly agreed that infectious endocarditis should be handled by antibiotic prophylaxis whenever possible because of its significant morbidity and mortality rate. The choice of the type of prophylaxis depends on the identification (i) of the patients with risk factors (ii), of medico surgical procedures possibly causing bacteremia (iii), of the most efficient prophylactic program and (iv) of the balance between secondary effects of medication and the risk of developing infectious endocarditis. The patients with risk factors and the medico surgical procedures causing bacteremia have been clearly identified by clinical research, whereas efficiency of prophylaxis is only established on the results of animal models. Animal experimentation contributed to a better understanding of the mechanisms of pathogenesis of infectious endocarditis. It made it possible to understand the functioning of antibiotics in the topic of the prevention of infectious endocarditis and to settle the basis of a judicious antibiotic prophylaxis adapted to the various patients with risk factors.
Resumo:
In this paper we propose a metaheuristic to solve a new version of the Maximum CaptureProblem. In the original MCP, market capture is obtained by lower traveling distances or lowertraveling time, in this new version not only the traveling time but also the waiting time willaffect the market share. This problem is hard to solve using standard optimization techniques.Metaheuristics are shown to offer accurate results within acceptable computing times.
Resumo:
New location models are presented here for exploring the reduction of facilities in aregion. The first of these models considers firms ceding market share to competitorsunder situations of financial exigency. The goal of this model is to cede the leastmarket share, i.e., retain as much of the customer base as possible while sheddingcostly outlets. The second model considers a firm essentially without competition thatmust shrink it services for economic reasons. This firm is assumed to close outlets sothat the degradation of service is limited. An example is offered within a competitiveenvironment to demonstrate the usefulness of this modeling approach.