807 resultados para Mobile Sensor Network


Relevância:

90.00% 90.00%

Publicador:

Resumo:

As cidades estão a seu tempo e a seu modo, modernizando os serviços prestados à população. Entre os diversos fatores que estão contribuindo para esta evolução estão a diversificação e proliferação de sensores, nos diversos domínios de serviços das cidades, e os novos canais de comunicação com os munícipes, entre eles, as redes sociais e mais recentemente os sistemas crowdsensing, motivados pelos anseios sociais, por melhores serviços públicos e pela popularização dos dispositivos móveis. Nesta direção, a eficiência administrativa é um fator essencial, uma vez que as cidades estão se mostrando mais complexas na medida em que cresce a população nas áreas urbanas. A utilização de técnicas de sistemas distribuídos para que múltiplos domínios de serviços usufruam da mesma infraestrutura computacional, pode auxiliar na eficiência das cidades, evitando gastos administrativos duplicados e até mesmo, possibilitando a correlação de eventos entre os serviços, favorecendo a identificação de fatores de causalidades e assim, a tomada de decisões administrativas mais objetivas e precisas. Neste contexto, este trabalho concentra-se na análise de um middleware direcionado à gestão de cidades para coleta, integração e interpretação dos dados de sensores, pertencentes aos serviços disponíveis da própria cidade, junto com os dados do sensoriamento colaborado pelos cidadãos. Para avaliação do conceito foi investigado o cenário de monitoração da conservação de vias públicas. Após 3 meses de coletas de dados por um sistema de sensoriamento automático, totalizando mais de 360 mil pontos e também mais de 90 relatórios pelo sensoriamento participativo, verificou-se que um sistema distribuído pode realizar a interpretação de séries históricas, engajar os munícipes apoiar a manutenção dos serviços da cidade e também indicar objetivamente aos gestores públicos os pontos que devem ser prioritariamente atendidos. Aliar ferramentas pelas quais o cidadão pode, de acordo com sua necessidade, convicção e altruísmo, exercer influência nos gestores públicos com o suporte de informação contínua e critérios objetivos das redes de sensores, pode estimular a continua excelência dos serviços públicos.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ad hoc wireless sensor networks (WSNs) are formed from self-organising configurations of distributed, energy constrained, autonomous sensor nodes. The service lifetime of such sensor nodes depends on the power supply and the energy consumption, which is typically dominated by the communication subsystem. One of the key challenges in unlocking the potential of such data gathering sensor networks is conserving energy so as to maximize their post deployment active lifetime. This thesis described the research carried on the continual development of the novel energy efficient Optimised grids algorithm that increases the WSNs lifetime and improves on the QoS parameters yielding higher throughput, lower latency and jitter for next generation of WSNs. Based on the range and traffic relationship the novel Optimised grids algorithm provides a robust traffic dependent energy efficient grid size that minimises the cluster head energy consumption in each grid and balances the energy use throughout the network. Efficient spatial reusability allows the novel Optimised grids algorithm improves on network QoS parameters. The most important advantage of this model is that it can be applied to all one and two dimensional traffic scenarios where the traffic load may fluctuate due to sensor activities. During traffic fluctuations the novel Optimised grids algorithm can be used to re-optimise the wireless sensor network to bring further benefits in energy reduction and improvement in QoS parameters. As the idle energy becomes dominant at lower traffic loads, the new Sleep Optimised grids model incorporates the sleep energy and idle energy duty cycles that can be implemented to achieve further network lifetime gains in all wireless sensor network models. Another key advantage of the novel Optimised grids algorithm is that it can be implemented with existing energy saving protocols like GAF, LEACH, SMAC and TMAC to further enhance the network lifetimes and improve on QoS parameters. The novel Optimised grids algorithm does not interfere with these protocols, but creates an overlay to optimise the grids sizes and hence transmission range of wireless sensor nodes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Groupe Spécial Mobile (GSM) has been developed as the pan-European second generation of digital mobile systems. GSM operates in the 900 MHz frequency band and employs digital technology instead of the analogue technology of its predecessors. Digital technology enables the GSM system to operate in much smaller zones in comparison with the analogue systems. The GSM system will offer greater roaming facilities to its subscribers, extended throughout the countries that have installed the system. The GSM system could be seen as a further enhancement to European integration. GSM has adopted a contention-based protocol for multipoint-to-point transmission. In particular, the slotted-ALOHA medium access protocol is used to coordinate the transmission of the channel request messages between the scattered mobile stations. Collision still happens when more than one mobile station having the same random reference number attempts to transmit on the same time-slot. In this research, a modified version of this protocol has been developed in order to reduce the number of collisions and hence increase the random access channel throughput compared to the existing protocol. The performance evaluation of the protocol has been carried out using simulation methods. Due to the growing demand for mobile radio telephony as well as for data services, optimal usage of the scarce availability radio spectrum is becoming increasingly important. In this research, a protocol has been developed whereby the number of transmitted information packets over the GSM system is increased without any additional increase of the allocated radio spectrum. Simulation results are presented to show the improvements achieved by the proposed protocol. Cellular mobile radio networks commonly respond to an increase in the service demand by using smaller coverage areas. As a result, the volume of the signalling exchanges increases. In this research, a proposal for interconnecting the various entitles of the mobile radio network over the future broadband networks based on the IEEE 802.6 Metropolitan Area Network (MAN) is outlined. Simulation results are presented to show the benefits achieved by interconnecting these entities over the broadband Networks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rapidly increasing demand for cellular telephony is placing greater demand on the limited bandwidth resources available. This research is concerned with techniques which enhance the capacity of a Direct-Sequence Code-Division-Multiple-Access (DS-CDMA) mobile telephone network. The capacity of both Private Mobile Radio (PMR) and cellular networks are derived and the many techniques which are currently available are reviewed. Areas which may be further investigated are identified. One technique which is developed is the sectorisation of a cell into toroidal rings. This is shown to provide an increased system capacity when the cell is split into these concentric rings and this is compared with cell clustering and other sectorisation schemes. Another technique for increasing the capacity is achieved by adding to the amount of inherent randomness within the transmitted signal so that the system is better able to extract the wanted signal. A system model has been produced for a cellular DS-CDMA network and the results are presented for two possible strategies. One of these strategies is the variation of the chip duration over a signal bit period. Several different variation functions are tried and a sinusoidal function is shown to provide the greatest increase in the maximum number of system users for any given signal-to-noise ratio. The other strategy considered is the use of additive amplitude modulation together with data/chip phase-shift-keying. The amplitude variations are determined by a sparse code so that the average system power is held near its nominal level. This strategy is shown to provide no further capacity since the system is sensitive to amplitude variations. When both strategies are employed, however, the sensitivity to amplitude variations is shown to reduce, thus indicating that the first strategy both increases the capacity and the ability to handle fluctuations in the received signal power.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wireless sensor networks have been identified as one of the key technologies for the 21st century. They consist of tiny devices with limited processing and power capabilities, called motes that can be deployed in large numbers of useful sensing capabilities. Even though, they are flexible and easy to deploy, there are a number of considerations when it comes to their fault tolerance, conserving energy and re-programmability that need to be addressed before we draw any substantial conclusions about the effectiveness of this technology. In order to overcome their limitations, we propose a middleware solution. The proposed scheme is composed based on two main methods. The first method involves the creation of a flexible communication protocol based on technologies such as Mobile Code/Agents and Linda-like tuple spaces. In this way, every node of the wireless sensor network will produce and process data based on what is the best for it but also for the group that it belongs too. The second method incorporates the above protocol in a middleware that will aim to bridge the gap between the application layer and low level constructs such as the physical layer of the wireless sensor network. A fault tolerant platform for deploying and monitoring applications in real time offers a number of possibilities for the end user giving him in parallel the freedom to experiment with various parameters, in an effort towards the deployed applications running in an energy efficient manner inside the network. The proposed scheme is evaluated through a number of trials aiming to test its merits under real time conditions and to identify its effectiveness against other similar approaches. Finally, parameters which determine the characteristics of the proposed scheme are also examined.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wireless sensor networks have been identified as one of the key technologies for the 21st century. In order to overcome their limitations such as fault tolerance and conservation of energy, we propose a middleware solution, In-Motes. In-Motes stands as a fault tolerant platform for deploying and monitoring applications in real time offers a number of possibilities for the end user giving him in parallel the freedom to experiment with various parameters, in an effort the deployed applications to run in an energy efficient manner inside the network. The proposed scheme is evaluated through the In-Motes EYE application, aiming to test its merits under real time conditions. In-Motes EYE application which is an agent based real time In-Motes application developed for sensing acceleration variations in an environment. The application was tested in a prototype area, road alike, for a period of four months.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The number of nodes has large impact on the performance, lifetime and cost of wireless sensor network (WSN). It is difficult to determine, because it depends on many factors, such as the network protocols, the collaborative signal processing (CSP) algorithms, etc. A mathematical model is proposed in this paper to calculate the number based on the required working time. It can be used in the general situation by treating these factors as the parameters of energy consumption. © 2004 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Location estimation is important for wireless sensor network (WSN) applications. In this paper we propose a Cramer-Rao Bound (CRB) based analytical approach for two centralized multi-hop localization algorithms to get insights into the error performance and its sensitivity to the distance measurement error, anchor node density and placement. The location estimation performance is compared with four distributed multi-hop localization algorithms by simulation to evaluate the efficiency of the proposed analytical approach. The numerical results demonstrate the complex tradeoff between the centralized and distributed localization algorithms on accuracy, complexity and communication overhead. Based on this analysis, an efficient and scalable performance evaluation tool can be designed for localization algorithms in large scale WSNs, where simulation-based evaluation approaches are impractical. © 2013 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When visual sensor networks are composed of cameras which can adjust the zoom factor of their own lens, one must determine the optimal zoom levels for the cameras, for a given task. This gives rise to an important trade-off between the overlap of the different cameras’ fields of view, providing redundancy, and image quality. In an object tracking task, having multiple cameras observe the same area allows for quicker recovery, when a camera fails. In contrast having narrow zooms allow for a higher pixel count on regions of interest, leading to increased tracking confidence. In this paper we propose an approach for the self-organisation of redundancy in a distributed visual sensor network, based on decentralised multi-objective online learning using only local information to approximate the global state. We explore the impact of different zoom levels on these trade-offs, when tasking omnidirectional cameras, having perfect 360-degree view, with keeping track of a varying number of moving objects. We further show how employing decentralised reinforcement learning enables zoom configurations to be achieved dynamically at runtime according to an operator’s preference for maximising either the proportion of objects tracked, confidence associated with tracking, or redundancy in expectation of camera failure. We show that explicitly taking account of the level of overlap, even based only on local knowledge, improves resilience when cameras fail. Our results illustrate the trade-off between maintaining high confidence and object coverage, and maintaining redundancy, in anticipation of future failure. Our approach provides a fully tunable decentralised method for the self-organisation of redundancy in a changing environment, according to an operator’s preferences.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy efficiency is one of the most important performances of a wireless sensor network. In this paper, we show that choosing a proper transmission scheme given the channel and network conditions can ensure a high energy performance in different transmission environments. Based on the energy models we established for both cooperative and non-cooperative communications, the efficiency in terms of energy consumption per bit for different transmission schemes is investigated. It is shown that cooperative transmission schemes can outperform non-cooperative schemes in energy efficiency in severe channel conditions and when the source-destination distance is in a medium or long range. But the latter is more energy efficient than the former for short-range transmission. For cooperative transmission schemes, the number of transmission branches and the number of relays per branch can also be properly selected to adapt to the variations of the transmission environment, so that the total energy consumption can be minimized.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.