913 resultados para Mitochondrial DNA mtDNA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We sequenced part of the 16S rRNA mitochondrial gene in 17 extant taxa of Pilosa (sloths and anteaters) and used these sequences along with GenBank sequences of both extant and extinct sloths to perform phylogenetic analysis based on parsimony, maximum-likelihood and Bayesian methods. By increasing the taxa density for anteaters and sloths we were able to clarify some points of the Pilosa phylogenetic tree. Our mitochondrial 16S results show Bradypodidae as a monophyletic and robustly supported clade in all the analysis. However, the Pleistocene fossil Mylodon darwinii does not group significantly to either Bradypodidae or Megalonychidae which indicates that trichotomy best represents the relationship between the families Mylodontidae, Bradypodidae and Megalonychidae. Divergence times also allowed us to discuss the taxonomic status of Cyclopes and the three species of three-toed sloths, Bradypus tridactylus, Bradypus variegatus and Bradypus torquatus. In the Bradypodidae the split between Bradypus torquatus and the proto-Bradypus tridactylus / B. variegatus was estimated as about 7.7 million years ago (MYA), while in the Myrmecophagidae the first offshoot was Cyclopes at about 31.8 MYA followed by the split between Myrmecophaga and Tamandua at 12.9 MYA. We estimate the split between sloths and anteaters to have occurred at about 37 MYA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Historicamente, o processo de formação das populações da Amazônia, assim como de todo território brasileiro, envolveu três grupos étnicos principais: o ameríndio, o europeu e o africano. Como conseqüência, estas populações possuem em geral constituição miscigenada do ponto de vista social e biológico. Desde o final do século passado, estudos do DNA mitocondrial (mtDNA) tem sido desenvolvidos com o propósito de estimar a mistura interétnica presente nestas populações. Para isto, é de fundamental importância a classificação de uma determinada linhagem de mtDNA em um dos mais de 250 haplogrupos/subclados propostos na literatura. Com o objetivo de desenvolver um sistema automatizado, preciso e acurado de classificação de seqüências (linhagens) de mtDNA, o presente trabalhou lançou mão da técnica de Redes Neurais Artificiais (RNA’s) tendo como base os estudos de filogeografia. Para esta classificação, foram desenvolvidas quatro redes neurais artificiais diretas, com múltiplas camadas e algoritmo de aprendizagem de retropropagação. As entradas de cada rede equivalem às posições nucleotídicas polimórficas da região hipervariável do DNA mitocondrial, as quais retornam como saída a classificação específica de cada linhagem. Posterior ao treinamento, todas as redes apresentaram índices de acerto de 100%, demonstrando que a técnica de Rede Neural Artificial pode ser utilizada, com êxito, na classificação de padrões filogeográficos com base no DNA mitocondrial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: The formation of the Brazilian Amazonian population has historically involved three main ethnic groups, Amerindian, African and European. This has resulted in genetic investigations having been carried out using classical polymorphisms and molecular markers. To better understand the genetic variability and the micro-evolutionary processes acting in human groups in the Brazilian Amazon region we used mitochondrial DNA to investigate 159 maternally unrelated individuals from five Amazonian African-descendant communities. The mitochondrial lineage distribution indicated a contribution of 50.2% from Africans (L0, L1, L2, and L3), 46.6% from Amerindians (haplogroups A, B, C and D) and a small European contribution of 1.3%. These results indicated high genetic diversity in the Amerindian and African lineage groups, suggesting that the Brazilian Amazonian African-descendant populations reflect a possible population amalgamation of Amerindian women from different Amazonian indigenous tribes and African women from different geographic regions of Africa who had been brought to Brazil as slaves. The present study partially mapped the historical biological and social interactions that had occurred during the formation and expansion of Amazonian African-descendant communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surveys of commercial markets combined with molecular taxonomy (i.e. molecular monitoring) provide a means to detect products from illegal, unregulated and/or unreported (IUU) exploitation, including the sale of fisheries bycatch and wild meat (bushmeat). Capture-recapture analyses of market products using DNA profiling have the potential to estimate the total number of individuals entering the market. However, these analyses are not directly analogous to those of living individuals because a ‘market individual’ does not die suddenly but, instead, remains available for a time in decreasing quantities, rather like the exponential decay of a radioactive isotope. Here we use mitochondrial DNA (mtDNA) sequences and microsatellite genotypes to individually identify products from North Pacific minke whales (Balaenoptera acutorostrata ssp.) purchased in 12 surveys of markets in the Republic of (South) Korea from 1999 to 2003. By applying a novel capture-recapture model with a decay rate parameter to the 205 unique DNA profiles found among 289 products, we estimated that the total number of whales entering trade across the five-year survey period was 827 (SE, 164; CV, 0.20) and that the average ‘half-life’ of products from an individual whale on the market was 1.82 months (SE, 0.24; CV, 0.13). Our estimate of whales in trade (reflecting the true numbers killed) was significantly greater than the officially reported bycatch of 458 whales for this period. This unregulated exploitation has serious implications for the survival of this genetically distinct coastal population. Although our capture-recapture model was developed for specific application to the Korean whale-meat markets, the exponential decay function could be modified to improve the estimates of trade in other wildmeat or fisheries markets or abundance of living populations by noninvasive genotyping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of mitochondrial dysfunction in cancer has long been a subject of great interest. In this study, such dysfunction has been examined with regards to thyroid oncocytoma, a rare form of cancer, accounting for less than 5% of all thyroid cancers. A peculiar characteristic of thyroid oncocytic cells is the presence of an abnormally large number of mitochondria in the cytoplasm. Such mitochondrial hyperplasia has also been observed in cells derived from patients suffering from mitochondrial encephalomyopathies, where mutations in the mitochondrial DNA(mtDNA) encoding the respiratory complexes result in oxidative phosphorylation dysfunction. An increase in the number of mitochondria occurs in the latter in order to compensate for the respiratory deficiency. This fact spurred the investigation into the presence of analogous mutations in thyroid oncocytic cells. In this study, the only available cell model of thyroid oncocytoma was utilised, the XTC-1 cell line, established from an oncocytic thyroid metastasis to the breast. In order to assess the energetic efficiency of these cells, they were incubated in a medium lacking glucose and supplemented instead with galactose. When subjected to such conditions, glycolysis is effectively inhibited and the cells are forced to use the mitochondria for energy production. Cell viability experiments revealed that XTC-1 cells were unable to survive in galactose medium. This was in marked contrast to the TPC-1 control cell line, a thyroid tumour cell line which does not display the oncocytic phenotype. In agreement with these findings, subsequent experiments assessing the levels of cellular ATP over incubation time in galactose medium, showed a drastic and continual decrease in ATP levels only in the XTC-1 cell line. Furthermore, experiments on digitonin-permeabilised cells revealed that the respiratory dysfunction in the latter was due to a defect in complex I of the respiratory chain. Subsequent experiments using cybrids demonstrated that this defect could be attributed to the mitochondrially-encoded subunits of complex I as opposed to the nuclearencoded subunits. Confirmation came with mtDNA sequencing, which detected the presence of a novel mutation in the ND1 subunit of complex I. In addition, a mutation in the cytochrome b subunit of complex III of the respiratory chain was detected. The fact that XTC-1 cells are unable to survive when incubated in galactose medium is consistent with the fact that many cancers are largely dependent on glycolysis for energy production. Indeed, numerous studies have shown that glycolytic inhibitors are able to induce apoptosis in various cancer cell lines. Subsequent experiments were therefore performed in order to identify the mode of XTC-1 cell death when subjected to the metabolic stress imposed by the forced use of the mitochondria for energy production. Cell shrinkage and mitochondrial fragmentation were observed in the dying cells, which would indicate an apoptotic type of cell death. Analysis of additional parameters however revealed a lack of both DNA fragmentation and caspase activation, thus excluding a classical apoptotic type of cell death. Interestingly, cleavage of the actin component of the cytoskeleton was observed, implicating the action of proteases in this mode of cell demise. However, experiments employing protease inhibitors failed to identify the specific protease involved. It has been reported in the literature that overexpression of Bcl-2 is able to rescue cells presenting a respiratory deficiency. As the XTC-1 cell line is not only respiration-deficient but also exhibits a marked decrease in Bcl-2 expression, it is a perfect model with which to study the relationship between Bcl-2 and oxidative phosphorylation in respiratory-deficient cells. Contrary to the reported literature studies on various cell lines harbouring defects in the respiratory chain, Bcl-2 overexpression was not shown to increase cell survival or rescue the energetic dysfunction in XTC-1 cells. Interestingly however, it had a noticeable impact on cell adhesion and morphology. Whereas XTC-1 cells shrank and detached from the growth surface under conditions of metabolic stress, Bcl-2-overexpressing XTC-1 cells appeared much healthier and were up to 45% more adherent. The target of Bcl-2 in this setting appeared to be the actin cytoskeleton, as the cleavage observed in XTC-1 cells expressing only endogenous levels of Bcl-2, was inhibited in Bcl-2-overexpressing cells. Thus, although unable to rescue XTC-1 cells in terms of cell viability, Bcl-2 is somehow able to stabilise the cytoskeleton, resulting in modifications in cell morphology and adhesion. The mitochondrial respiratory deficiency observed in cancer cells is thought not only to cause an increased dependency on glycolysis but it is also thought to blunt cellular responses to anticancer agents. The effects of several therapeutic agents were thus assessed for their death-inducing ability in XTC-1 cells. Cell viability experiments clearly showed that the cells were more resistant to stimuli which generate reactive oxygen species (tert-butylhydroperoxide) and to mitochondrial calcium-mediated apoptotic stimuli (C6-ceramide), as opposed to stimuli inflicting DNA damage (cisplatin) and damage to protein kinases(staurosporine). Various studies in the literature have reported that the peroxisome proliferator-activated receptor-coactivator 1(PGC-1α), which plays a fundamental role in mitochondrial biogenesis, is also involved in protecting cells against apoptosis caused by the former two types of stimuli. In accordance with these observations, real-time PCR experiments showed that XTC-1 cells express higher mRNA levels of this coactivator than do the control cells, implicating its importance in drug resistance. In conclusion, this study has revealed that XTC-1 cells, like many cancer cell lines, are characterised by a reduced energetic efficiency due to mitochondrial dysfunction. Said dysfunction has been attributed to mutations in respiratory genes encoded by the mitochondrial genome. Although the mechanism of cell demise in conditions of metabolic stress is unclear, the potential of targeting thyroid oncocytic cancers using glycolytic inhibitors has been illustrated. In addition, the discovery of mtDNA mutations in XTC-1 cells has enabled the use of this cell line as a model with which to study the relationship between Bcl-2 overexpression and oxidative phosphorylation in cells harbouring mtDNA mutations and also to investigate the significance of such mutations in establishing resistance to apoptotic stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in OPA1 gene have been identified in the majority of patients with Dominant Optic Atrophy (DOA), a blinding disease, and the syndromic form DOA-plus. OPA1 protein is a mitochondrial GTPase involved in various mitochondrial functions, present in humans in eight isoforms, resulting from alternative splicing and proteolytic processing. In this study we have investigated the specific role of each isoform through expression in OPA-/- MEFs, by evaluating their ability to improve the defective mitochondrial phenotypes. All isoforms were able to rescue the energetic efficiency, mitochondrial DNA (mtDNA) content and cristae integrity, but only the presence of both long and short forms could recover the mitochondrial morphology. In order to identify the OPA1 protein domains crucial for its functions, we selected and modified the isoform 1, shown to be one of the most efficient in preserving mitochondrial phenotype, to express three specific OPA1 variants, namely: one with a different N-terminus portion, one unable to generate short form owing to deletion of S1 cleavage site and one with a defective GTPase domain. We demonstrated that the simultaneous presence of the N- and C-terminus of OPA1 was essential for the mtDNA maintenance; a cleavable isoform generating s-forms was necessary to completely rescue the energetic competence and the presence of the C-terminus was sufficient to partially recover the cristae ultrastructure. Lastly, several pathogenic OPA1 mutations were inserted in MEF clones and the biochemical features investigated, to correlate the defective phenotypes with the clinical severity of patients. Our results clearly indicate that this cell model reflects very well the clinical characteristics of the patients, and therefore can be proposed as an useful tool to shed light on the pathomechanism underlying DOA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although eosinophils are considered useful in defense mechanisms against parasites, their exact function in innate immunity remains unclear. The aim of this study is to better understand the role of eosinophils within the gastrointestinal immune system. We show here that lipopolysaccharide from Gram-negative bacteria activates interleukin-5 (IL-5)- or interferon-gamma-primed eosinophils to release mitochondrial DNA in a reactive oxygen species-dependent manner, but independent of eosinophil death. Notably, the process of DNA release occurs rapidly in a catapult-like manner--in less than one second. In the extracellular space, the mitochondrial DNA and the granule proteins form extracellular structures able to bind and kill bacteria both in vitro and under inflammatory conditions in vivo. Moreover, after cecal ligation and puncture, Il5-transgenic but not wild-type mice show intestinal eosinophil infiltration and extracellular DNA deposition in association with protection against microbial sepsis. These data suggest a previously undescribed mechanism of eosinophil-mediated innate immune responses that might be crucial for maintaining the intestinal barrier function after inflammation-associated epithelial cell damage, preventing the host from uncontrolled invasion of bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutrophil extracellular traps (NETs) represent extracellular structures able to bind and kill microorganisms. It is believed that they are generated by neutrophils undergoing cell death, allowing these dying or dead cells to kill microbes. We show that, following priming with granulocyte/macrophage colony-stimulating factor (GM-CSF) and subsequent short-term toll-like receptor 4 (TLR4) or complement factor 5a (C5a) receptor stimulation, viable neutrophils are able to generate NETs. Strikingly, NETs formed by living cells contain mitochondrial, but no nuclear, DNA. Pharmacological or genetic approaches to block reactive oxygen species (ROS) production suggested that NET formation is ROS dependent. Moreover, neutrophil populations stimulated with GM-CSF and C5a showed increased survival compared with resting neutrophils, which did not generate NETs. In conclusion, mitochondrial DNA release by neutrophils and NET formation do not require neutrophil death and do also not limit the lifespan of these cells.