937 resultados para Minorities in medicine
Resumo:
HtrA (High Temperature Requirement A) is a critical stress response protease and chaperone for many bacteria. HtrA is a multitasking protein which can degrade unfolded proteins, conduct specific proteolysis of some substrates for correct assembly, interact with substrates to ensure correct folding, assembly or localisation, and chaperone unfolded proteins. These functions are critical for the virulence of a number of bacterial pathogens, in some cases not simply due to the broad activities of HtrA in protection against the protein stress conditions which occur during virulence. But also due to the role of HtrA in either specific proteolysis or assembly of key protein substrates which function directly in virulence. Remarkably, these activities are all conducted without any requirement for ATP. The biochemical mechanism of HtrA relies both on the chymotryptic serine protease active site as well as the presence of two PDZ (protein binding) domains. The mechanism is a unique combination of activation by substrate motifs to alter the confirmation of the active site, and assembly into a multimeric complex which has enhanced degradation and may also act as a protective cage for proteins which are not degraded. The role of this protease in the pathogenesis of a number of bacteria and the details of its distinctive biochemical activation and assembly mechanisms are discussed in this chapter.
Resumo:
Fibrous scaffolds of engineered structures can be chosen as promising porous environments when an approved criterion validates their applicability for a specific medical purpose. For such biomaterials, this paper sought to investigate various structural characteristics in order to determine whether they are appropriate descriptors. A number of poly(3-hydroxybutyrate) scaffolds were electrospun; each of which possessed a distinguished architecture when their material and processing conditions were altered. Subsequent culture of mouse fibroblast cells (L929) was carried out to evaluate the cells viability on each scaffold after their attachment for 24 h and proliferation for 48 and 72 h. The scaffolds’ porosity, pores number, pores size and distribution were quantified and none could establish a relationship with the viability results. Virtual reconstruction of the mats introduced an authentic criterion, “Scaffold Percolative Efficiency” (SPE), with which the above descriptors were addressed collectively. It was hypothesized to be able to quantify the efficacy of fibrous scaffolds by considering the integration of porosity and interconnectivity of the pores. There was a correlation of 80% as a good agreement between the SPE values and the spectrophotometer absorbance of viable cells; a viability of more than 350% in comparison to that of the controls.
Resumo:
Purpose: The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone for the assessment of osteoporosis follows a parabolic-type dependence with bone volume fraction; having minima values corresponding to both entire bone and entire marrow. Langton has recently proposed that the primary BUA mechanism may be significant phase interference due to variations in propagation transit time through the test sample as detected over the phase-sensitive surface of the receive ultrasound transducer. This fundamentally simple concept assumes that the propagation of ultrasound through a complex solid : liquid composite sample such as cancellous bone may be considered by an array of parallel ‘sonic rays’. The transit time of each ray is defined by the proportion of bone and marrow propagated, being a minimum (tmin) solely through bone and a maximum (tmax) solely through marrow. A Transit Time Spectrum (TTS), ranging from tmin to tmax, may be defined describing the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit time over the surface of the receive ultrasound transducer. Phase interference may result from interaction of ‘sonic rays’ of differing transit times. The aim of this study was to test the hypothesis that there is a dependence of phase interference upon the lateral inhomogenity of transit time by comparing experimental measurements and computer simulation predictions of ultrasound propagation through a range of relatively simplistic solid:liquid models exhibiting a range of lateral inhomogeneities. Methods: A range of test models was manufactured using acrylic and water as surrogates for bone and marrow respectively. The models varied in thickness in one dimension normal to the direction of propagation, hence exhibiting a range of transit time lateral inhomogeneities, ranging from minimal (single transit time) to maximal (wedge; ultimately the limiting case where each sonic ray has a unique transit time). For the experimental component of the study, two unfocused 1 MHz ¾” broadband diameter transducers were utilized in transmission mode; ultrasound signals were recorded for each of the models. The computer simulation was performed with Matlab, where the transit time and relative amplitude of each sonic ray was calculated. The transit time for each sonic ray was defined as the sum of transit times through acrylic and water components. The relative amplitude considered the reception area for each sonic ray along with absorption in the acrylic. To replicate phase-sensitive detection, all sonic rays were summed and the output signal plotted in comparison with the experimentally derived output signal. Results: From qualtitative and quantitative comparison of the experimental and computer simulation results, there is an extremely high degree of agreement of 94.2% to 99.0% between the two approaches, supporting the concept that propagation of an ultrasound wave, for the models considered, may be approximated by a parallel sonic ray model where the transit time of each ray is defined by the proportion of ‘bone’ and ‘marrow’. Conclusions: This combined experimental and computer simulation study has successfully demonstrated that lateral inhomogeneity of transit time has significant potential for phase interference to occur if a phase-sensitive ultrasound receive transducer is implemented as in most commercial ultrasound bone analysis devices.
Resumo:
Contemporary 3D radiotherapy treatment planning relies upon the use of 3D electron density maps derived from computed tomography (CT) scans of patient anatomy, to evaluate the effects of that anatomy on radiation dose distributions. Production of these electron density maps requires that the CT numbers (Hounsfield units) that quantify the attenuation of the x-ray beam by the patient’s anatomy must be reliably converted into electron densities, using a stable calibration relationship. This study investigates the fidelity of electron density assignment in the presence of metallic prostheses and implants.
Resumo:
To evaluate the ability of ultrasonography to predict eventual symptoms in an at-risk population, 52 elite junior basketball players' patellar tendons were studied at baseline and again 16 months later. The group consisted of 10 study tendons (ultrasonographically hypoechoic at baseline) and 42 control tendons (ultrasonographically normal at baseline). By design, all tendons were asymptomatic at baseline. No differences were noted between subjects and controls at baseline for age, height, weight, training hours, and vertical jump. Functional (P < 0.01) and symptomatic outcome (P < 0.05) were poorer for subjects' tendons than for controls. Relative risk for developing symptoms of jumper's knee was 4.2 times greater in case tendons than in control tendons. Men were more likely to develop ultrasonographic changes than women (P < 0.025), and they also had significantly increased training hours per week (P < 0.01) in the study period. Half (50%) of abnormal tendons in women became ultrasonographically normal in the study period. Our data suggest that presence of an ultrasonographic hypoechoic area is associated with a greater risk of developing jumper's knee symptoms. Ultrasonographic patellar tendon changes may resolve, but this is not necessary for an athlete to become asymptomatic. Qualitative or quantitative analysis of baseline ultrasonographic images revealed it was not possible to predict which tendons would develop symptoms or resolve ultrasonographically.
Resumo:
Introduction The presentation of pulmonary embolism to the emergency department (ED) can prove challenging because of the myriad of potential disease processes that mimic its signs and symptoms. The incidence of pulmonary embolism and indeed the mortality associated with it is relatively high. Early diagnosis and treatment is crucial in off-setting the potential deleterious effects associated with this condition. The aim of this article is to present a nursing case review of a patient presenting to the ED with a diagnosis of pulmonary embolism. Method We chose to use a case review to highlight the nursing and medical care that was provided for a patient who presented to the emergency department acutely with dyspnoea, chest pain and pyrexia. The use of case reviews are useful in reporting unusual or rare cases and this format is typically seen more in medicine than in nursing. They can naturally take one of two formats—a single case report or a series of case reports; in this case we opted to report on a single case. Discussion The gentleman in question was an ambulance admissionto the ED with a three day history of chest pain, shortness of breath and one episode of syncope which brought him to the ED. Over the course of his admission a variety of treatment modalities were used successfully to alleviate the problem. More notable from a nursing perspective was the use of diagnostic tools as an interpretation to guide his care and provide a platform from which a deeper understanding and appreciation of the intricacies the critically ill patient often presents. Conclusion We found the use of case review very enlightening in understanding the disease process and the decision-making that accompanies this. Whilst our patient was successfully rehabilitated home, we learnt a lot from the experience which has been most beneficial in supporting our understanding of pulmonary embolism.
Resumo:
Introduction The admission to the Intensive Care Unit with a diagnosis of sepsis and/or septic shock is not uncommon. The aim of this article is to present a nursing case review of a patient admitted to the intensive care unit with a diagnosis of septic shock and the use of bedside acid–base formulae to inform clinical decision making. Method We chose to use a case review. This method is useful in reporting unusual or rare cases and is typically seen more in medicine than in nursing. Discussion The gentleman in question was a self-presentation with a short history of fever and worsening shortness of breath. His condition worsened where he required admission to the intensive care unit. The use of ‘advanced’ acid–base interpretation to guide his nursing care provided a platform from which to advance a deeper understanding of the intricacies the critically ill patient often presents. Conclusion The use of case review is enlightening in understanding the disease process and the decision-making that accompanies this. The lessons learnt are applicable to a wider nursing audience because understanding acid–base physiology is beneficial in supporting and advancing critical care nursing practice.
Resumo:
Introduction Total scatter factor (or output factor) in megavoltage photon dosimetry is a measure of relative dose relating a certain field size to a reference field size. The use of solid phantoms has been well established for output factor measurements, however to date these phantoms have not been tested with small fields. In this work, we evaluate the water equivalency of a number of solid phantoms for small field output factor measurements using the EGSnrc Monte Carlo code. Methods The following small square field sizes were simulated using BEAMnrc: 5, 6, 7, 8, 10 and 30 mm. Each simulated phantom geometry was created in DOSXYZnrc and consisted of a silicon diode (of length and width 1.5 mm and depth 0.5 mm) submersed in the phantom at a depth of 5 g/cm2. The source-to-detector distance was 100 cm for all simulations. The dose was scored in a single voxel at the location of the diode. Interaction probabilities and radiation transport parameters for each material were created using custom PEGS4 files. Results A comparison of the resultant output factors in the solid phantoms, compared to the same factors in a water phantom are shown in Fig. 1. The statistical uncertainty in each point was less than or equal to 0.4 %. The results in Fig. 1 show that the density of the phantoms affected the output factor results, with higher density materials (such as PMMA) resulting in higher output factors. Additionally, it was also calculated that scaling the depth for equivalent path length had negligible effect on the output factor results at these field sizes. Discussion and conclusions Electron stopping power and photon mass energy absorption change minimally with small field size [1]. Also, it can be seen from Fig. 1 that the difference from water decreases with increasing field size. Therefore, the most likely cause for the observed discrepancies in output factors is differing electron disequilibrium as a function of phantom density. When measuring small field output factors in a solid phantom, it is important that the density is very close to that of water.
Resumo:
Gel dosimetry and plastic chemical dosimeters such as PresageTM are capable of very accurately mapping dose distributions in three dimensions. Combined with their near tissue equivalence one would expect that after several decades of development they would be the dosimeter of choice for dosimetry, however they have not achieve widespread clinical use. This presentation will include a brief description and history of developments in gels and 3D plastics for dosimetry, the limitations and advantages, and their role in the future.
Resumo:
Objective Recently, Taylor et al. reported that use of the BrainLAB m3 microMLC, for stereotactic radiosurgery, results in a decreased out-of-field dose in the direction of leaf-motion compared to the outof- field dose measured in the direction orthogonal to leaf-motion [1]. It was recommended that, where possible, patients should be treated with their superior–inferior axes aligned with the microMLCs leafmotion direction, to minimise out-of-field doses [1]. This study aimed, therefore, to examine the causes of this asymmetry in outof- field dose and, in particular, to establish that a similar recommendation need not be made for radiotherapy treatments delivered by linear accelerators without external micro-collimation systems. Methods Monte Carlo simulations were used to study out-of-field dose from different linear accelerators (the Varian Clinacs 21iX and 600C and the Elekta Precise) with and without internal MLCs and external microMLCs [2]. Results Simulation results for the Varian Clinac 600C linear accelerator with BrainLAB m3 microMLC confirm Taylor et als [1] published experimental data. The out-of-field dose in the leaf motion direction is deposited by lower energy (more obliquely scattered) photons than the out-of-field dose in the orthogonal direction. Linear accelerators without microMLCs produce no asymmetry in out-offield dose. Conclusions The asymmetry in out-of-field dose previously measured by Taylor et al. [1] results from the shielding characteristics of the BrainLAB m3 microMLC device and is not produced by the linear accelerator to which it is attached.
Resumo:
Obesity rates are increasing in children of all ages, and reduced physical activity (PA) is a likely contributor to this trend. Little is known about the physical activity behavior of preschool-age children, or about the influence of preschool attendance on physical activity. Purpose The purpose of this study was to quantify the physical activity levels of children attending a center-based half-day preschool program. Methods Forty-two 3-to-5-year old children (Mean age = 4.0 ± 0.7, 54.8% Male, Mean BMI = 16.5 ± 5.5, Mean BMI %tile = 52.1 ± 33.5) from four class groups (two morning and two afternoon), wore an Actigraph 7164 accelerometer for the entire halfday program (including classroom learning experiences, snack and recess time) 2 times per week, for 10 weeks (20 activity monitoring records in total). Activity counts for each 5-sec interval were uploaded to a customized data reduction program to determine total counts, minutes of moderate PA (MPA) (3–5.9 METs), and minutes of vigorous PA (VPA) (> = 6 METs) per session. Counts were categorized as either MPA or VPA using the cutpoints developed by Sirard and colleagues (2001). Results Across the four 2.5 hour programs, the average MPA, VPA and total counts (× 103) were 12.4 ± 3.1 minutes, 18.3 ± 4.6 minutes, and 171.1 ± 29.7 counts, respectively. Thus, on average, children accumulated just over 12 minutes of moderateto-vigorous PA per hour of program attendance. The PA variables did not differ significantly by gender, weight status, or time of day. There were, however, significant age differences, with 3-year-olds exhibiting significantly less PA than their 4- and 5-year-old counterparts. Conclusions These results suggest that young children are relatively lowactive while attending preschool. Accordingly, interventions to increase movement opportunities during the preschool day are warranted.
Resumo:
Purpose The aim of this study was to assess the predictive validity of three accelerometer prediction equations (Freedson et aL, 1997; Trost et aL, 1998; Puyau et al., 2002) for energy expenditure (EE) during overland walking and running in children and adolescents. Methods 45 healthy children and adolescents aged 10-18 completed the following protocol, each task 5-mins in duration, with a 5-min rest period in between; walking normally; walking briskly; running easily and running fast. During each task participants wore MTI (WAM 7164) Actigraphs on the left and right hips. VO2 was monitored breath by breath using the Cosmed K4b2 portable indirect calorimetry system. For each prediction equation, difference scores were calculated as EE measured minus EE predicted. The percentage of 1-min epochs correctly categorized as light (<3 METs), moderate (3-5.9 METs), and vigorous (≥6 METS) was also calculated. Results The Freedson and Trost equations consistently overestimated MET level. The level of overestimation was statistically significant across all tasks for the Freedson equation, and was significant for only the walking tasks for the Trost equation. The Puyau equation consistently underestimated AEE with the exception of the walking normally task. In terms of categorisation, the Freedson equation (72.8% agreement) demonstrated better agreement than the Puyau (60.6%). Conclusions These data suggest that the three accelerometer prediction equations do not accurately predict EE on a minute-by-minute basis in children and adolescents during overland walking and running. However, the cut points generated by these equations maybe useful for classifying activity as either, light, moderate, or vigorous.
Resumo:
Effects of surrounding gases on the propagation of room-temperature atmospheric-pressure plasma jets are reported. A highly unusual feather-like plasma plume is observed only when N2 is used as surrounding gas. The He concentration on the axis at the starting point of the feather-like plume is ∼0.85 of the maximum value and is independent on the He flow rates. High-speed optical imaging reveals that dim diffuse plasmas emerge just behind the bright head of the plasma bullet at the starting point of the feather-like plume. These results help tailoring surface exposure in emerging applications of plasma jets in medicine and nanotechnology.
Resumo:
Background: In recent years, there have been investigations concerning upper-limbs kinematics by various devices. The latest generation of smartphones often includes inertial sensors with subunits which can detect inertial kinematics. The use of smartphones is presented as a convenient and portable analysis method for studying kinematics in terms of angular mobility and linear acceleration Objective: The aim of this study was to study humerus kinematics through six physical properties that correspond to angular mobility and acceleration in the three axes of space, obtained by a smartphone. Methods: This cross-sectional study recruited healthy young adult subjects. Descriptive and anthropometric independent variables related to age, gender, weight, size, and BMI were included. Six physical properties were included corresponding to two dependent variables for each of three special axes: mobility angle (degrees) and lineal acceleration (meters/seconds2), which were obtained thought the inertial measurement sensor embedded in the iPhone4 smartphone equipped with three two elements for the detection of kinematic variables: a gyroscope and an accelerometer. Apple uses an LIS302DL accelerometer in the iPhone4. The application used to obtain kinematic data was xSensor Pro, Crossbow Technology, Inc., available at the Apple AppStore. The iPhone4 has storage capacity of 20MB. The data-sampling rate was set to 32 Hz, and the data for each analytical task was transmitted as email for analysis and postprocessing The iPhone4 was placed in the right half of the body of each subject located in the middle third of the humerus slightly posterior snugly secured by a neoprene fixation belt. Tasks were explained concisely and clearly. The beginning and the end were decided by a verbal order by the researcher. Participants were placed standing, starting from neutral position, performing the following analytical tasks: 180º right shoulder abduction (eight repetitions) and, after a break of about 3 minutes, 180º right shoulder flexion (eight repetitions). Both tasks were performed with the elbow extended, wrist in neutral position and the palmar area of the hand toward the midline at the beginning and end of the movement. Results: A total of 11 subjects (8 men, 3 woman) were measured, whose mean of age was 24.7 years (SD = 4.22 years) and their average BMI was 22.64 Kg/m2 (SD = 2.29 Kg/m2). The mean of angular mobility collected by the smartphone was bigger in pitch axis for flexion (= 157.28°, SD= 12.35°) and abduction (= 151.71°, SD= 9.70°). With regard to acceleration, the highest peak mean value was shown in the Y motion axis during flexion (= 19.5°/s2, SD = 0.8°/s2) and abduction (= 19.4°/s2, SD = 0.8°/s2). Also, descriptive graphics of analytical tasks performed were obtained. Conclusions: This study shows how humerus contributes to upper-limb motion and it identified movement patterns. Therefore, it supports smartphone as a useful device to analyze upper-limb kinematics. Thanks to this study it´s possible to develop a simple application that facilitates the evaluation of the patient.
Resumo:
Radiographs are commonly used to assess articular reduction of the distal tibia (pilon) fractures postoperatively, but may reveal malreductions inaccurately. While Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are potential 3D alternatives they generate metal-related artifacts. This study aims to quantify the artifact size from orthopaedic screws using CT, 1.5T and 3T MRI data. Three screws were inserted into one intact human cadaver ankle specimen proximal to and along the distal articular surface, then CT, 1.5T and 3T MRI scanned. Four types of screws were investigated: titanium alloy (TA), stainless steel (SS) (Ø = 3.5 mm), cannulated TA (CTA) and cannulated SS (CSS)(Ø = 4.0 mm, Ø empty core = 2.6 mm). 3D artifact models were reconstructed using adaptive thresholding. The artifact size was measured by calculating the perpendicular distance from the central screw axis to the boundary of the artifact in four anatomical directions with respect to the distal tibia. The artifact sizes (in the order of TA, SS, CTA and CSS) from CT were 2.0 mm, 2.6 mm, 1.6 mm and 2.0 mm; from 1.5T MRI they were 3.7 mm, 10.9 mm, 2.9 mm, and 9 mm; and 3T MRI they were 4.4 mm, 15.3 mm, 3.8 mm, and 11.6 mm respectively. Therefore, CT can be used as long as the screws are at a safe distance of about 2 mm from the articular surface. MRI can be used if the screws are at least 3 mm away from the articular surface except SS and CSS. Artifacts from steel screws were too large thus obstructed the pilon from being visualised in MRI. Significant differences (P < 0.05) were found in the size of artifacts between all imaging modalities, screw types and material types, except 1.5T versus 3T MRI for the SS screws (P = 0.063). CTA screws near the joint surface can improve postoperative assessment in CT and MRI. MRI presents a favourable non-ionising alternative when using titanium hardware. Since these factors may influence the quality of postoperative assessment, potential improvements in operative techniques should be considered.