847 resultados para Mining claims
Resumo:
The mining environment, being complex, irregular, and time-varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper evaluates a number of matching techniques for possible use in a stereo vision sensor for mining automation applications. Area-based techniques have been investigated because they have the potential to yield dense maps, are amenable to fast hardware implementation, and are suited to textured scenes. In addition, two nonparametric transforms, namely, rank and census, have been investigated. Matching algorithms using these transforms were found to have a number of clear advantages, including reliability in the presence of radiometric distortion, low computational complexity, and amenability to hardware implementation.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. The objective is to produce a stereo vision sensor suited to close-range scenes consisting primarily of rocks. This sensor should be able to produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance for this investigation. A number of area based matching metrics have been implemented, including the SAD, SSD, NCC, and their zero-meaned versions. The NCC and the zero meaned SAD and SSD were found to produce the disparity maps with the highest proportion of valid matches. The plain SAD and SSD were the least computationally expensive, due to all their operations taking place in integer arithmetic, however, they were extremely sensitive to radiometric distortion. Non-parametric techniques for matching, in particular, the rank and the census transform, have also been investigated. The rank and census transforms were found to be robust with respect to radiometric distortion, as well as being able to produce disparity maps with a high proportion of valid matches. An additional advantage of both the rank and the census transform is their amenability to fast hardware implementation.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper assesses the suitability of a number of matching techniques for use in a stereo vision sensor for close range scenes consisting primarily of rocks. These include traditional area-based matching metrics, and non-parametric transforms, in particular, the rank and census transforms. Experimental results show that the rank and census transforms exhibit a number of clear advantages over area-based matching metrics, including their low computational complexity, and robustness to certain types of distortion.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper evaluates a number of matching techniques for possible use in a stereo vision sensor for mining automation applications. Area-based techniques have been investigated because they have the potential to yield dense maps, are amenable to fast hardware implementation, and are suited to textured scenes. In addition, two non-parametric transforms, namely, the rank and census, have been investigated. Matching algorithms using these transforms were found to have a number of clear advantages, including reliability in the presence of radiometric distortion, low computational complexity, and amenability to hardware implementation.
Resumo:
Global demand for minerals and energy products has fuelled Australia’s recent ‘resources boom’ and led to the rapid expansion of mining projects not solely in remote regions but increasingly in long-settled traditionally agriculture-dependent rural areas. Not only has this activity radically changed the economic geography of the nation but a fundamental shift has also occurred to accommodate the acceleration in industry labour demands. In particular, the rush to mine has seen the entrenchment of workforce arrangements largely dependent on fly-in, fly-out (FIFO) and drive–in, drive–out (DIDO) workers. This form of employment has been highly contentious in rural communities at the frontline of resource sector activities. In the context of structural sweeping changes, the selection of study locations informed by a range of indices of violence. Serendipitously we carried out fieldwork in communities undergoing rapid change as a result of expanding resource sector activities. The presence of large numbers of non-resident FIFO and DIDO workers was transforming these frontline communities. This chapter highlights some implications of these changes, drawing upon one particular location, which historically depended on agriculture but has undergone redefinition through mining.
Resumo:
Although the multiple economic, environmental and social challenges threatening the viability of rural and regional communities in Australia are well-known, little research has explored how community leaders conceptualise the impact and opportunities associated with economic diversification from agriculture into alternative industries, such as tourism and mining. This qualitative research, utilising the Darling Downs in Queensland as a case study, documents how 28 local community leaders have experienced this economic diversification process. The findings reveal that local community leaders have a deep understanding about the opportunities and challenges presented by diversification, articulating a clear vision about how to achieve the best possible future for their region. Despite excitement about growth, there were concerns about preserving heritage, the increased pressure on local infrastructure and an ageing population. By documenting local leader’s insights, these findings may help inform planning for rural and regional communities and facilitate management of the exciting yet challenging process of growth and diversification
Resumo:
In Australia, few fashion brands have intervened in the design of their products or the systems around their product to tackle environmental pollution and waste. Instead, support of charities (whether social or environmental) has become conflated with sustainability in the eyes of the public.However, three established Australian brands recently put forward initiatives which explicitly tackle the pre-consumer or post-consumer waste associated with their products. In 2011, Billabong, one of the largest surfwear companies in the world, developed a collection of board shorts made from recycled bottles that are also recyclable at end of life. The initiative has been promoted in partnership with Bob Marley’s son Rohan Marley, and the graphics of the board shorts reference the Rastafarian colours and make use of Marley’s song lyrics. In this way, the company has tapped into an aspect of surf culture linked to environmental activism, in which the natural world is venerated. Two mid-market initiatives, by Metalicus and Country Road, each have a social outcome that arguably aligns to the values of their middle-class consumer base. Metalicus is spear-heading a campaign for Australian garment manufacturers to donate their pre consumer waste – fabric off-cuts – to charity Open Family Australia to be manufactured into quilts for the homeless. Country Road has partnered with the Australian Red Cross to implement a recycling scheme in which consumers donate their old Country Road garments in exchange for a Country Road gift voucher. Both strategies, while tackling waste, tell an altruistic story in which the disadvantaged can benefit from the consumption habits of the middle-class. To varying degrees, the initiative chosen by each company feeds into the stories they tell about themselves and about the consumers who purchase their clothing. However, how can we assess the impact of these schemes on waste management in real terms, or indeed the worth of each scheme in the wider context of the fashion system? This paper will assess the claims made by the companies and analyse their efficacy, suggesting that a more nuanced assessment of green claims is required, in which ‘green’ comes in many tonal variations.
Resumo:
Retrieving information from Twitter is always challenging due to its large volume, inconsistent writing and noise. Most existing information retrieval (IR) and text mining methods focus on term-based approach, but suffers from the problems of terms variation such as polysemy and synonymy. This problem deteriorates when such methods are applied on Twitter due to the length limit. Over the years, people have held the hypothesis that pattern-based methods should perform better than term-based methods as it provides more context, but limited studies have been conducted to support such hypothesis especially in Twitter. This paper presents an innovative framework to address the issue of performing IR in microblog. The proposed framework discover patterns in tweets as higher level feature to assign weight for low-level features (i.e. terms) based on their distributions in higher level features. We present the experiment results based on TREC11 microblog dataset and shows that our proposed approach significantly outperforms term-based methods Okapi BM25, TF-IDF and pattern based methods, using precision, recall and F measures.
Resumo:
Product rating systems are very popular on the web, and users are increasingly depending on the overall product ratings provided by websites to make purchase decisions or to compare various products. Currently most of these systems directly depend on users’ ratings and aggregate the ratings using simple aggregating methods such as mean or median [1]. In fact, many websites also allow users to express their opinions in the form of textual product reviews. In this paper, we propose a new product reputation model that uses opinion mining techniques in order to extract sentiments about product’s features, and then provide a method to generate a more realistic reputation value for every feature of the product and the product itself. We considered the strength of the opinion rather than its orientation only. We do not treat all product features equally when we calculate the overall product reputation, as some features are more important to customers than others, and consequently have more impact on customers buying decisions. Our method provides helpful details about the product features for customers rather than only representing reputation as a number only.
Resumo:
The Queensland Supreme Court case of Cape Flattery Silica Mines Pty Ltd v Hope Vale Aboriginal Shire Council [2012] QSC 381 provides guidance on the long-term ramifications of compensation agreements for mining activities. The central issue considered by the Court was whether compensation payments relate to land and run with the land pursuant to s 53(1) of the Property Law Act.
Resumo:
With the overwhelming increase in the amount of texts on the web, it is almost impossible for people to keep abreast of up-to-date information. Text mining is a process by which interesting information is derived from text through the discovery of patterns and trends. Text mining algorithms are used to guarantee the quality of extracted knowledge. However, the extracted patterns using text or data mining algorithms or methods leads to noisy patterns and inconsistency. Thus, different challenges arise, such as the question of how to understand these patterns, whether the model that has been used is suitable, and if all the patterns that have been extracted are relevant. Furthermore, the research raises the question of how to give a correct weight to the extracted knowledge. To address these issues, this paper presents a text post-processing method, which uses a pattern co-occurrence matrix to find the relation between extracted patterns in order to reduce noisy patterns. The main objective of this paper is not only reducing the number of closed sequential patterns, but also improving the performance of pattern mining as well. The experimental results on Reuters Corpus Volume 1 data collection and TREC filtering topics show that the proposed method is promising.
Resumo:
It is a big challenge to find useful associations in databases for user specific needs. The essential issue is how to provide efficient methods for describing meaningful associations and pruning false discoveries or meaningless ones. One major obstacle is the overwhelmingly large volume of discovered patterns. This paper discusses an alternative approach called multi-tier granule mining to improve frequent association mining. Rather than using patterns, it uses granules to represent knowledge implicitly contained in databases. It also uses multi-tier structures and association mappings to represent association rules in terms of granules. Consequently, association rules can be quickly accessed and meaningless association rules can be justified according to the association mappings. Moreover, the proposed structure is also an precise compression of patterns which can restore the original supports. The experimental results shows that the proposed approach is promising.
Resumo:
A value-shift began to influence global political thinking in the late 20th century, characterised by recognition of the need for environmentally, socially and culturally sustainable resource development. This shift entailed a move away from thinking of ‘nature’ and ‘culture’ as separate entities – the former existing to serve the latter – toward the possibility of embracing the intrinsic worth of the nonhuman world. Cultural landscape theory recognises ‘nature’ as at once both ‘natural’, and a ‘cultural’ construct. As such, it may offer a framework through which to progress in the quest for ‘sustainable development’. This study makes a contribution to this quest by asking whether contemporary developments in cultural landscape theory can contribute to rehabilitation strategies for Australian open-cut coal mining landscapes. The answer is ‘yes’. To answer the research question, a flexible, ‘emergent’ methodological approach has been used, resulting in the following outcomes. A thematic historical overview of landscape values and resource development in Australia post-1788, and a review of cultural landscape theory literature, contribute to the formation of a new theoretical framework: Reconnecting the Interrupted Landscape. This framework establishes a positive answer to the research question. It also suggests a method of application within the Australian open-cut coal mining landscape, a highly visible exemplar of the resource development landscape. This method is speculatively tested against the rehabilitation strategy of an operating open-cut coal mine, concluding with positive recommendations to the industry, and to government.
Resumo:
Understanding network traffic behaviour is crucial for managing and securing computer networks. One important technique is to mine frequent patterns or association rules from analysed traffic data. On the one hand, association rule mining usually generates a huge number of patterns and rules, many of them meaningless or user-unwanted; on the other hand, association rule mining can miss some necessary knowledge if it does not consider the hierarchy relationships in the network traffic data. Aiming to address such issues, this paper proposes a hybrid association rule mining method for characterizing network traffic behaviour. Rather than frequent patterns, the proposed method generates non-similar closed frequent patterns from network traffic data, which can significantly reduce the number of patterns. This method also proposes to derive new attributes from the original data to discover novel knowledge according to hierarchy relationships in network traffic data and user interests. Experiments performed on real network traffic data show that the proposed method is promising and can be used in real applications. Copyright2013 John Wiley & Sons, Ltd.
Resumo:
Crude petroleum remains the single most imported commodity into Australia and is sourced from a number of countries around the world (Department of Foreign Affairs and Trade (DFAT), 2011a). While interest in crude petroleum is widespread, in recent years Australia's focus has been drawn to the continent of Africa, where increased political stability, economic recovery and an improved investment climate has made one of the largest oil reserves in the world increasingly more attractive. Despite improvement across the continent, there remain a number of risks which have the potential to significantly damage Australia's economic interests in the petroleum sector,including government policies and legislation, corruption and conflict. The longest exporters of crude petroleum products to Australia – Nigeria and Libya – have been subject to these factors in recent years and, accordingly, are the focus of this paper. Once identified, the impact of political instability, conflict, government corruption and other risk factors to Australia's mining interests within these countries is examined, and efforts to manage such risks are discussed.