331 resultados para Micrornas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Similar to human chronic lymphocytic leukemia (CLL), the de novo New Zealand Black (NZB) mouse model has a genetically determined age-associated increase in malignant B-1 clones and decreased expression of microRNAs miR-15a and miR-16 in B-1 cells. In the present study, lentiviral vectors were employed in vivo to restore miR-15a/16, and both the short-term single injection and long-term multiple injection effects of this delivery were observed in NZB. Control lentivirus without the mir-15a/16 sequence was used for comparison. We found that in vivo lentiviral delivery of mir-15a/16 increased miR-15a/16 expression in cells that were transduced (detected by GFP expression) and in sera when compared with control lentivirus treatment. More importantly, mice treated with the miR-expressing lentivirus had decreased disease. The lentivirus had little systemic toxicity while preferentially targeting B-1 cells. Short-term effects on B-1 cells were direct effects, and only malignant B-1 cells transduced with miR-15a/16 lentivirus had decreased viability. In contrast, long-term studies suggested both direct and indirect effects resulting from miR-15a/16 lentivirus treatment. A decrease in B-1 cells was found in both the transduced and non-transduced populations. Our data support the potential use of systemic lentiviral delivery of miR-15a/16 to ameliorate disease manifestations of CLL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are small, noncoding RNAs that regulate target mRNAs by binding to their 3' untranslated regions. There is growing evidence that microRNA-155 (miR155) modulates gene expression in various cell types of the immune system and is a prominent player in the regulation of innate and adaptive immune responses. To define the role of miR155 in dendritic cells (DCs) we performed a detailed analysis of its expression and function in human and mouse DCs. A strong increase in miR155 expression was found to be a general and evolutionarily conserved feature associated with the activation of DCs by diverse maturation stimuli in all DC subtypes tested. Analysis of miR155-deficient DCs demonstrated that miR155 induction is required for efficient DC maturation and is critical for the ability of DCs to promote antigen-specific T-cell activation. Expression-profiling studies performed with miR155(-/-) DCs and DCs overexpressing miR155, combined with functional assays, revealed that the mRNA encoding the transcription factor c-Fos is a direct target of miR155. Finally, all of the phenotypic and functional defects exhibited by miR155(-/-) DCs could be reproduced by deregulated c-Fos expression. These results indicate that silencing of c-Fos expression by miR155 is a conserved process that is required for DC maturation and function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last three decades genetic and biochemical studies have revealed the pleiotropic effects of the Myc oncoprotein. While cell line studies have defined the intracellular processes regulated by Myc such as proliferation, differentiation, and metabolic growth, in vivo studies have confirmed these functions, and revealed roles in acquisition and maintenance of stem cell properties. These roles may be partially mediated by Myc's capacity to modify the chromatin landscape on a global scale. Myc also regulates numerous protein-coding transcripts, and many noncoding RNAs (rRNAs, tRNAs, and miRNAs). As Myc activity directly correlates with protein expression, further complexity is provided by post-translational modifications that regulate Myc in normal stem cells or deregulate it in malignant stem cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MicroRNAs (miRs) are involved in the pathogenesis of several neoplasms; however, there are no data on their expression patterns and possible roles in adrenocortical tumors. Our objective was to study adrenocortical tumors by an integrative bioinformatics analysis involving miR and transcriptomics profiling, pathway analysis, and a novel, tissue-specific miR target prediction approach. Thirty-six tissue samples including normal adrenocortical tissues, benign adenomas, and adrenocortical carcinomas (ACC) were studied by simultaneous miR and mRNA profiling. A novel data-processing software was used to identify all predicted miR-mRNA interactions retrieved from PicTar, TargetScan, and miRBase. Tissue-specific target prediction was achieved by filtering out mRNAs with undetectable expression and searching for mRNA targets with inverse expression alterations as their regulatory miRs. Target sets and significant microarray data were subjected to Ingenuity Pathway Analysis. Six miRs with significantly different expression were found. miR-184 and miR-503 showed significantly higher, whereas miR-511 and miR-214 showed significantly lower expression in ACCs than in other groups. Expression of miR-210 was significantly lower in cortisol-secreting adenomas than in ACCs. By calculating the difference between dCT(miR-511) and dCT(miR-503) (delta cycle threshold), ACCs could be distinguished from benign adenomas with high sensitivity and specificity. Pathway analysis revealed the possible involvement of G2/M checkpoint damage in ACC pathogenesis. To our knowledge, this is the first report describing miR expression patterns and pathway analysis in sporadic adrenocortical tumors. miR biomarkers may be helpful for the diagnosis of adrenocortical malignancy. This tissue-specific target prediction approach may be used in other tumors too.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Nrf2 transcription factor controls the expression of genes involved in the antioxidant defense system. Here, we identified Nrf2 as a novel regulator of desmosomes in the epidermis through the regulation of microRNAs. On Nrf2 activation, expression of miR-29a and miR-29b increases in cultured human keratinocytes and in mouse epidermis. Chromatin immunoprecipitation identified the Mir29ab1 and Mir29b2c genes as direct Nrf2 targets in keratinocytes. While binding of Nrf2 to the Mir29ab1 gene activates expression of miR-29a and -b, the Mir29b2c gene is silenced by DNA methylation. We identified desmocollin-2 (Dsc2) as a major target of Nrf2-induced miR-29s. This is functionally important, since Nrf2 activation in keratinocytes of transgenic mice causes structural alterations of epidermal desmosomes. Furthermore, the overexpression of miR-29a/b or knockdown of Dsc2 impairs the formation of hyper-adhesive desmosomes in keratinocytes, whereas Dsc2 overexpression has the opposite effect. These results demonstrate that a novel Nrf2-miR-29-Dsc2 axis controls desmosome function and cutaneous homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Spermatogenesis is a complex biological process that requires a highly specialized control of gene expression. In the past decade, small non-coding RNAs have emerged as critical regulators of gene expression both at the transcriptional and post-transcriptional level. DICER1, an RNAse III endonuclease, is essential for the biogenesis of several classes of small RNAs, including microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), but is also critical for the degradation of toxic transposable elements. In this study, we investigated to which extent DICER1 is required for germ cell development and the progress of spermatogenesis in mice.Principal Findings: We show that the selective ablation of Dicer1 at the early onset of male germ cell development leads to infertility, due to multiple cumulative defects at the meiotic and post-meiotic stages culminating with the absence of functional spermatozoa. Alterations were observed in the first spermatogenic wave and include delayed progression of spermatocytes to prophase I and increased apoptosis, resulting in a reduced number of round spermatids. The transition from round to mature spermatozoa was also severely affected, since the few spermatozoa formed in mutant animals were immobile and misshapen, exhibiting morphological defects of the head and flagellum. We also found evidence that the expression of transposable elements of the SINE family is up-regulated in Dicer1-depleted spermatocytes.Conclusions/Significance: Our findings indicate that DICER1 is dispensable for spermatogonial stem cell renewal and mitotic proliferation, but is required for germ cell differentiation through the meiotic and haploid phases of spermatogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) regulate the function of several immune cells, but their role in promoting CD8(+) T cell immunity remains unknown. Here we report that miRNA-155 is required for CD8(+) T cell responses to both virus and cancer. In the absence of miRNA-155, accumulation of effector CD8(+) T cells was severely reduced during acute and chronic viral infections and control of virus replication was impaired. Similarly, Mir155(-/-) CD8(+) T cells were ineffective at controlling tumor growth, whereas miRNA-155 overexpression enhanced the antitumor response. miRNA-155 deficiency resulted in accumulation of suppressor of cytokine signaling-1 (SOCS-1) causing defective cytokine signaling through STAT5. Consistently, enforced expression of SOCS-1 in CD8(+) T cells phenocopied the miRNA-155 deficiency, whereas SOCS-1 silencing augmented tumor destruction. These findings identify miRNA-155 and its target SOCS-1 as key regulators of effector CD8(+) T cells that can be modulated to potentiate immunotherapies for infectious diseases and cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Only a very small fraction of long noncoding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into their functionality, but the absence of lncRNA annotations in non-model organisms has precluded comparative analyses. Here we present a large-scale evolutionary study of lncRNA repertoires and expression patterns, in 11 tetrapod species. We identify approximately 11,000 primate-specific lncRNAs and 2,500 highly conserved lncRNAs, including approximately 400 genes that are likely to have originated more than 300 million years ago. We find that lncRNAs, in particular ancient ones, are in general actively regulated and may function predominantly in embryonic development. Most lncRNAs evolve rapidly in terms of sequence and expression levels, but tissue specificities are often conserved. We compared expression patterns of homologous lncRNA and protein-coding families across tetrapods to reconstruct an evolutionarily conserved co-expression network. This network suggests potential functions for lncRNAs in fundamental processes such as spermatogenesis and synaptic transmission, but also in more specific mechanisms such as placenta development through microRNA production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies in the lab of Dr. Liliane Michalik, have shown thai the nuclear hormone receptor Peroxisome Proliferator Activated Receptor beta/delta (PPARß/ö) is an important regulator of skin homeostasis, being involved in the regulation of keratinocyte differentiation, inflammation, apoptosis, arid mouse skin wound healing. Studies of PPARß/ö knock out mice have suggested a possible role for this receptor in cancer. However, contradictory observations of the role for PPARß/ö on tumor growth have been published, depending on cellular contexts and biological models. Given the controversial role of PPARß/ö in skin carcinoma development, the main aim of this PhD work has been to further explore the implication of PPARß/ö in skin response to UV and skin tumor growth. This PhD dissertation is divided in four chapters. The first chapter describes the core part of the project, where I explored the changes in miRNA expression in the skin upon chronic UV irradiation of PPARß/ö wild type and knock-out mice. This analysis shed light on a miRNA- PPARß/ö signature and also predicted thai miR-21-3p (previously named miR-21*) is a key regulator of the PPARß/ö-dependent UV response in the pre-lesiona! skin. Using mice acutely UV-irradiated, ! further demonstrated that miR-21-3p is indirectly regulated by PPARß/ö through activation of Transforming Growth Factor (TGFß)-1 under UV exposure. I also show that miR-21-3p is deregulated in human cutaneous squamous celi carcinoma. In cultured keratinocytes, application of a miR-21 -3p mimic oligonucleotide sequence leads to the regulation of lipid metabolism-related pathway. In the second chapter, I demonstrate that the usage of an mRNA/miRNA combined bioinformatics analysis leads to the discovery of important pathways involved in the PPARß/ö-miRNA response of the skin to chronic UV irradiation, indeed, I validated angiogenesis and lipid metabolism as important functions regulated by PPARß/ö in this context. In the third chapter, we demonstrate that PPARß/5 knockout mice have decreased cutaneous squamous cell carcinomas incidence compared to wild type mice and that PPARß/5 directly activates the cSrc kinase gene. In the last chapter, we review novel insights into PPAR functions in keratinocytes and liver, with emphasis on PPARß/ö but also on PPARa. In summary, this PhD study shows that i) PPARß/5 is able to regulate biological function through regulation of miRNAs, and specifically through miR-21-3p, the passenger miRNA of the oncomiR miR-21, and that ii) the PPARß/5-dependent skin response to UV involves the regulation of angiogenesis and lipid metabolism. Furthermore, the bioinformatics study highlights the relevance of performing integrated mRNA and miRNA genome-wide studies in order to better screen mRNAs and/or miRNAs of interest in the biological context of diseases. - Des études préalables dans le laboratoire du Dr. Liliane Michalik ont démontré que le récepteur nucléaire PPARß/5 est un régulateur important de l'homéostasie de la peau, étant impliqué dans la régulation de la différenciation des keratinocytes, dans l'inflammation, dans l'apoptose et dans la cicatrisation de la peau chez !a souris. L'étude de souris knock-out pour le gène PPARß/5, ont suggérées un rôle possible de ce récepteur dans le cancer. Cependant, des observations opposées ont été publiées suggérant un rôle pro- ou anti- cancer selon le tissue impliqué et le type- cellulaire. En considérant cette controverse autour du rôle de PPARß/5 dans le développement des cancers de la peau, le but principal de mon projet de recherche aura été d'approfondir l'exploration du rôle de PPARß/5 dans la réponse de la peau aux UVs et dans le développement du cancer. Cette dissertation de thèse est divisée en quatre parties. Une première partie, représentant le coeur de mon travail de recherche, décrit la découverte de l'implication des microRNAs (rniRNAs) dans la réponse aux UVs de PPARß/ö et plus spécifiquement l'implication du miRNA miR- 21 -3p (précédemment nommé miR-21*). En étudiant un modèle de souris irradiées de manière aigüe aux UVs, nous montrons que ia régulation de miR-21-3p est PPARß/ö-däpenaante et que cette régulation à lieu par l'intermédiaire du facteur de transcription TGFß-1. Dans des cultures de keratinocytes Humains, la transfecticn d'une séquence oligonucléotidique similaire à celle de miR-21-3p (mimic), montre l'implication de rniR-21-3p dans des fonctions importantes pour le développement des cancers telles que le métabolisme des lipides. Dans un second chapitre, nous montrons que l'usage d'une méthode bioinformatique combinant l'expression des ARN messagers et des miRNAs permet de mettre en évidence des fonctions biologiques importantes lors de ia réponse de PPARß/ö à l'irradiation chronique. L'angiogenèse, le stress oxydatif et le métabolisme des lipides font partie de ces fonctions régulées par PPARß/5 dans la peau irradiée aux UVs. Nous mettons également en évidence la régulation du gène LpcatS par PPARß/5 dans la peau irradiée aux UV ainsi que dans des keratinocytes humains suggérant un rôle pour PPARß/5 dans le remodelage des lipides membranaires. Dans une troisième partie, nous établissons un lien entre la régulation de l'oncogène Src et l'activation de PPARß/5 dans les carcinomes spinocellulaires de la peau. Finalement dans un quatrième chapitre, nous faisons une revue des dernières recherches portées sur le rôle de PPARß/5 et de PPARa dans le foie et ia peau. En résumé ce projet de thèse représente un avancement pour la recherche sur rimplication de PPARß/5 dans la réponse aux UVs de la peau. Pour la première fois, un lien est établi entre ce facteur de transcription et la régulation de microRNAs dans le cadre du carcinome spinocellulare. Jusqu'alors resté dans l'ombre de rniR-21-5p, miR-21-3p est en fait fortement augmenté à la fois dans un modèle de souris d'irradiation aux UVs ainsi que dans ie carcinome spinocellulare chez i'humain. De nouvelles fonctions biologiques pour PPARß/5 ont été également mises en évidence dans ce travail, comme la régulation de l'angiogenèse ou du métabolisme des lipides dans Sa peau. De plus cette dissertation valorise l'intérêt d'une association entre le travail de laboratoire et celui de la bioinformatique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The differentiation of CD8+ T lymphocytes following priming of naïve cells is central in the establishment of the adaptive immune response. Yet, the molecular events underlying this process are not fully understood. MicroRNAs have been recently shown to play a key role in the regulation of haematopoiesis in mouse, but their implication in peripheral lymphocyte differentiation in humans remains largely unknown. METHODS: In order to explore the potential implication of microRNAs in CD8+ T cell differentiation in humans, microRNA expression profiles were analysed using microarrays and quantitative PCR in several human CD8+ T cell subsets defining the major steps of the T cell differentiation pathway. RESULTS: We found expression of a limited set of microRNAs, including the miR-17~92 cluster. Moreover, we reveal the existence of differentiation-associated regulation of specific microRNAs. When compared to naive cells, miR-21 and miR-155 were indeed found upregulated upon differentiation to effector cells, while expression of the miR-17~92 cluster tended to concomitantly decrease. CONCLUSIONS: This study establishes for the first time in a large panel of individuals the existence of differentiation associated regulation of microRNA expression in human CD8+ T lymphocytes in vivo, which is likely to impact on specific cellular functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BackgroundRecently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8+CD25+ Treg cells and the impact of microRNAs on molecules associated with immune regulation.MethodsWe purified human natural CD8+ Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA `signature¿ for CD8+CD25+FOXP3+CTLA-4+ natural Treg cells. We used the `TargetScan¿ and `miRBase¿ bioinformatics programs to identify potential target sites for these microRNAs in the 3¿-UTR of important Treg cell-associated genes.ResultsThe human CD8+CD25+ natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo.ConclusionsWe are examining the biological relevance of this `signature¿ by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. Cell-free miRNAs detected in blood plasma are used as specific and sensitive markers of physiological processes and some diseases. Circulating miRNAs are highly stable in body fluids, for example plasma. Therefore, profiles of circulating miRNAs have been investigated for potential use as novel, non-invasive anti-doping biomarkers. This review describes the biological mechanisms underlying the variation of circulating miRNAs, revealing that they have great potential as a new class of biomarker for detection of doping substances. The latest developments in extraction and profiling technology, and the technical design of experiments useful for anti-doping, are also discussed. Longitudinal measurements of circulating miRNAs in the context of the athlete biological passport are proposed as an efficient strategy for the use of these new markers. The review also emphasizes potential challenges for the translation of circulating miRNAs from research into practical anti-doping applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malignant gliomas, including the most common and fatal form glioblastoma (GBM, WHO grade IV astrocytoma), remain a challenge to treat. In the United States and Europe, more than 30,000 patients per year are newly diagnosed with GBM. Despite ongoing trials, the best currently available multimodal treatment approaches include surgical resection followed by concomitant and adjuvant radiation (RT) and temozolomide (TMZ) therapy, resulting in a low median overall survival (OS) rate ranging from 12.2 - 15.9 months. The important role of genetic and epigenetic changes in DNA, RNA, and protein alteration as well as epigenetic changes secondary to the tumor microenvironment and outside selection pressure (therapeutic interventions), are increasingly being recognized. In GBM treatment, the focus is shifting toward a more patient-centered (personalized) therapy. In this regard, in particular, microRNAs are being increasingly studied. MicroRNAs are non¬protein coding small RNAs that serve as negative gene regulators by binding to a specific sequence in the promoter region of a target gene, thus regulating gene expression. A single microRNA potentially targets hundreds of genes; thus, microRNAs and their cognate target genes have important roles as tumor suppressors and oncogenes as well as regulators of various cancer- specific cellular features, such as proliferation, apoptosis, invasion, and metastasis. The identification of distinct microRNA-gene regulatory networks in GBM patients can be expected to provide novel therapeutic insights by identifying candidate patients for targeted therapies. To this end, in this work we identified and validated clinically relevant and meaningful novel gene- microRNA regulatory networks that correlated with MR tumor phenotypes, histopathology, and patient survival and response rates to therapy. - Le traitement des gliomes malins, y compris sous leur forme la plus commune et meurtrière, le glioblastome (GBM, ou astrocytome de grade IV selon l'OMS), demeure à ce jour un défi. Aux États-Unis et en Europe, un nouveau diagnostic de GBM est prononcé dans plus de 30Ό00 cas par an. En dépit de tests en cours, les meilleures approches thérapeutiques combinées actuellement disponibles comprennent la résection chirurgicale de la tumeur, suivie d'une radiothérapie adjuvante ainsi que d'un traitement au temozolomide (RT/TMZ), thérapies dont résulte une médiane de survie globale basse (overall survival, OS), comprise entre 12.2 et 15.9 mois. On reconnaît de plus en plus le rôle majeur de l'ADN, de l'ARN et de l'altération des protéines ainsi que des modifications épigénétiques, secondaires par rapport au microenvironnement de la tumeur et à la pression de sélection extérieure (les interventions thérapeutiques). Dans le traitement du GBM, le centre d'intérêt se déplace vers une thérapie centrée sur le cas individuel du patient. Dans ce but, en particulier les microARN sont de plus en plus analysés. Les microARN sont de petits ARN non-codants (les protéines) qui servent de régulateurs négatifs de gènes en s'attachant à une séquence spécifique dans la région promotrice d'un gène-cible, régulant ainsi l'expression du gène. Un seul microARN cible potentiellement des centaines de gènes; on a ainsi découvert que les microARN et leurs gènes-cibles apparentés ont une fonction importante en tant que suppresseurs de tumeurs et d'oncogènes, ainsi que comme régulateurs de diverses caractéristiques cellulaires spécifiques du cancer, comme la prolifération, l'apoptose, l'invasion et la métastase. On peut s'attendre à ce que l'identification de réseaux microARN régulateurs de gènes, distincts selon les patients de GBM, fournisse une approche thérapeutique inédite par la détermination des patients susceptibles de réagir favorablement à des thérapies ciblées.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regulatory T cells (Tregs) play a key role in immune system homeostasis and tolerance to antigens, thereby preventing autoimmunity, and may be partly responsible for the lack of an appropriate immune response against tumor cells. Although not sufficient, a high expression of forkhead box P3 (FOXP3) is necessary for their suppressive function. Recent reports have shown that histones deacetylase inhibitors increased FOXP3 expression in T cells. We therefore decided to investigate in non-Tregs CD4-positive cells, the mechanisms by which an aspecific opening of the chromatin could lead to an increased FOXP3 expression. We focused on binding of potentially activating transcription factors to the promoter region of FOXP3 and on modifications in the five miRs constituting the Tregs signature. Valproate treatment induced binding of Ets-1 and Ets-2 to the FOXP3 promoter and acted positively on its expression, by increasing the acetylation of histone H4 lysines. Valproate treatment also induced the acquisition of the miRs Tregs signature. To elucidate whether the changes in the miRs expression could be due to the increased FOXP3 expression, we transduced these non-Tregs with a FOXP3 lentiviral expression vector, and found no changes in miRs expression. Therefore, the modification in their miRs expression profile is not due to an increased expression of FOXP3 but directly results from histones deacetylase inhibition. Rather, the increased FOXP3 expression results from the additive effects of Ets factors binding and the change in expression level of miR-21 and miR-31. We conclude that valproate treatment of human non-Tregs confers on them a molecular profile similar to that of their regulatory counterpart.