969 resultados para Microcrystalline cellulose


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel lower critical solution temperature (LCST) membrane forming system containing cellulose acetate (CA)/poly (vinyl pyrrolidone) (PVP 3 60K)/N-methyl-2-pyrrolidone (NMP)/1,2-propanediol with a weight ratio of 24.0:5.0:62.6:8.4 had been developed. CA hollow fiber ultrafiltration (UF) membranes were fabricated using the dry-wet spinning technique. The fibers were post-treated with a 200 mg/L hypochlorite solution over a period of 6 It at pH 7. The experimental results showed that water flux of a membrane decreased while retention increased with increasing CA concentration in a dope. It was concluded that the membrane pore size decreased with increasing CA concentration. The membrane fouling tendency for BSA was 3 times higher than that for PVP 24K. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical method for preparation of covalently boned cellulose derivative chiral stationary phases (CSP) with diisocyanate as spacer was improved. Diisocyanate was firstly allowed to react with 3-aminopropyltriethoxysilane, and the resulting product was then applied as the spacer reagent to immobilize cellulose derivatives onto silica gel. Influences of the amount and the length of the spacer on the optical resolution ability of the CSP were investigated. Comparing improved procedure to classical diisocyanate method, the cross-linking between the glucose units of the cellulose derivatives was avoided to the most extent. With the improved procedure, regio-nonselective ways could be adopted to prepare covalently bonded CSP, which showed an advantage for the rapid preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of the well-known preservative properties of Sphagnum moss, a potential opportunity to use moss polysaccharides (Sphagnan) in art conservation was tested. Polysaccharides were extracted from the moss (S. palustre spp.) in the amount of 4.1% of the Sphagnum plant dry weight. All lignocelluloses were removed from this extract as a result of the treatment of the moss cellulose with sodium chlorite. The extracted polysaccharide possessed a strong acidic reaction (pH 2.8) and was soluble in water and organic solvents. The extract was tested on laboratory bacterial cultures by the disk-diffusion method. The antibacterial effect was demonstrated for E. coli and P. aeruginosa (both gram-negative) while Staphylococcus aurelus (gram-positive) was shown to be insensitive to Sphagnum polysaccharides. The antifungal effect of Sphagnum extract was tested by the disk-diffusion method on the spores of seventeen fungal species. These fungi were isolated from ethnographic museum objects and from archaeological objects excavated in the Arctic. Twelve of these isolates appeared susceptible to the extract. The inhibiting effect of the extract was also tested by the modified broth-dilution method on the most typical isolate (Aspergillus spp.). In this experiment, in one ml of the nutritious broth, 40µl of 3% solution of polysaccharides in water killed 10,000 fungal spores in 6 hours. The inhibiting effect was not connected to the acidity or osmotic effect of Sphagnum polysaccharides. As an example of the application of Sphagnum polysaccharides in art conservation, they were added as preservative agents to conservation waxes. After three weeks of exposure of microcrystalline wax to test fungi (Aspergillus spp.), 44% of wax was consumed. When, however, ~ 0.1% (w/w) of Sphagnum extract was mixed with wax, the weight loss of wax was only 4% in the same time interval. On the basis of this study it was concluded that Sphagnum moss and Sphagnum products can be recommended for use in art conservation as antifungal agents.