164 resultados para Microclimate
Resumo:
One of the main challenges urban areas, and more particularly the compact ones, are facing is their adaptation to climate change. In recent years, is had been recognized that a more ecosystem approach to spatial planning can play a critical role in meeting these challenges. Green Infrastructure (GI) and its integration in spatial planning emerges as one of the most appropriate and effective ways to improve microclimate and tackle the impacts of climate change and mainly the Urban Heat Island (UHI) effect. This paper initially attempts to clarify the term GI and portrays its benefits and its role as an important spatial planning tool to fulfill different environmental, social and economic needs of urban areas. Then, the paper proceeds to an empirical evaluation of the role of GI in reducing the vulnerability to UHI effect in a compact urban area of the city of Thessaloniki. For this reason, a simple methodology is developed with a twofold purpose: to recognize the risks posed by climate change and especially UHI and to assess the potential offered by available in a compact area GI assets as well as by their redesign in order to maximize their contribution to climate change adaptation.
Resumo:
This research investigates the microclimate and the morphology features of the central campus of the UFRN, in Natal-RN, through the use of bioclimatic tools of analysis in order to assist the implementation of the campus´ Master Plan. It develops a diagnosis of the evolution and growth of the urban space surveyed by analyzing its initial plan and the basic urban conception behind it, as well as the morphology and typologies utilized. The study makes a qualitative analysis of the local microclimate by using Katzschner (1997) methodology, with land-use and topography maps, building heights, vegetation and soil covering. It also makes use of the methodology proposed by Oliveira (1993), which examines, from the bioclimatic standpoint, the human environment as related to the urban form (site and built mass). It identifies zones whose climatic characteristics are representative of the local microclimate and classifies them into areas to be strictly preserved, areas to be protected and areas to be improved. By means of the methodology for spatial and environmental assessment developed by Bustos Romero (2001), the survey selects characteristic points of each area in order to register the environmental data relative to the two basic seasons found in the region where the campus is located, that is, the dry and the rainy season, so that it can evaluate changes in the environment which might have been caused by urban density growth, by arborization or by the influence of the urban form. It then proceeds to a quantitative and statistical survey of the collected data with the purpose of evaluating the degree of influence of the identified features over the environmental variables along the different scales of approach. The study shows the existence of different microclimates and emphasizes the relevance of the bioclimatic analysis of the built environment as a tool for the decision-making process along the development of the Master Plan for UFRN Central Campus
Resumo:
A Área de Proteção Ambiental da Lagoa Verde é composta por um mosaico de unidades ambientais. Entre elas, destaca-se um fragmento de mata de restinga que reúne características físicas e microclimáticas para o estudo de ecologia de briófitas. Este estudo teve por objetivo realizar o levantamento das espécies de briófitas; fornece novas ocorrências de briófitas para o Rio Grande do Sul; avaliar a influência dos gradientes longitudinal e vertical na distribuição de briófitas; quantificar a variação da diversidade de briófitas nos gradientes longitudinal e vertical. Foram identificadas 51 espécies de briófitas como novas ocorrências para o Rio Grande do Sul, sendo 11 musgos e 40 hepáticas. Além do local de estudo foram identificadas espécies que estavam no herbário SP. No estudo dos gradientes longitudinal e vertical foram identificadas 53 espécies de briófitas, sendo 17 musgos e 36 hepáticas. Através da análise dos transectos e da inclusão dos forófitos subdivididos em três zonas de altura, foram coletadas amostras terrícolas e corticícolas. As briófitas respondem aos gradientes, através dos fatores microclimáticos (luminosidade e umidade), em relação ao aumento da riqueza e mudança na composição de espécies. A partição aditiva da diversidade de briófitas quantificou a variação da composição de espécies em cada gradiente. A diversidade entre cada nível dos gradientes longitudinal (umidade) e vertical (luminosidade) variou em torno de 40% e 50%, respectivamente. Em conclusão, o estudo sobre a ecologia de briófitas gerou conhecimento sobre a diversidade e biogeografia das espécies; contribuiu para o entendimento da distribuição das briófitas em função dos gradientes longitudinal e vertical, por influência de fatores microclimáticos e; revelou a variação da composição de espécies em função dos gradientes horizontal (umidade) e vertical (luminosidade).
Resumo:
Common building energy modeling approaches do not account for the influence of surrounding neighborhood on the energy consumption patterns. This thesis develops a framework to quantify the neighborhood impact on a building energy consumption based on the local wind flow. The airflow in the neighborhood is predicted using Computational Fluid Dynamics (CFD) in eight principal wind directions. The developed framework in this study benefits from wind multipliers to adjust the wind velocity encountering the target building. The input weather data transfers the adjusted wind velocities to the building energy model. In a case study, the CFD method is validated by comparing with on-site temperature measurements, and the building energy model is calibrated using utilities data. A comparison between using the adjusted and original weather data shows that the building energy consumption and air system heat gain decreased by 5% and 37%, respectively, while the cooling gain increased by 4% annually.
Resumo:
The present research concerns about outdoor s thermal comfort conditions in hot-humid climate cities, understanding that life quality is a result of the urban object s type built for the human being in an environment with specific climate and morphological characteristics. It is presented as object of study the correlation between the neighborhood Renascença II s microclimate in São Luis /MA-Brazil, hot-humid climate city, and its urban morphological changes. As well as the thermal comfort s satisfaction level of its outdoor users. The research has as general goal to diagnosis the way these transformations caused by the urbanization influence the Renascença II s microclimate, identifying critical spots of the studied area, in order to contribute with land use recommendations based on bioclimatic architecture concepts and supply bases to urban design decisions adequate to the São Luis climate. It is presented as theoretical bases the urban climate, its concepts and elements. After that, the thermal comfort conditioners and its prediction models of thermal comfort sensation in outdoor are presented. The predictive models are presented along with bioclimatic assessment methods. Finally the use of bioclimatic assessment as an effective tool to identify places that need changes or preservation in order to seek environment quality. The applied methodology was based on the studies of Katzschner (1997), complemented by Oliveira s (1988) and Bustos Romero s (2001) studies that suggest an analysis and evaluation of maps of topography, buildings floors, land use, green areas and land covering, in order to overlap their characteristics and identify climate variable s measurements points; then a quantitative analysis of the climate variables (air temperature and humidity, wind speed and direction) of the chosen points takes place. It was perceived that Renaissance II has no permanence areas as squares or parks, its outdoor has little vegetation and presets high land impermeability and built density levels. The majority of the people interviewed said that was comfortable in a range of air temperature between 27,28ºC and 30,71ºC. The elaboration of a neighborhood master plan is important, which defines strategies for improvement of the life quality of its inhabitants
Resumo:
Owing to na intense process of urban development, urban uneasiness and discomfort in the daily life of populations have nowadays, especially in the big cities, become increasingly ordinary issues. Population density, degeneration of central areas and pollution are some of the environmental stressors the urban man is subjected to. The existence of open areas in the urban network contributes to a better movement of the air and transforms salubrity conditions. Yet, it has been noticed that parks and squares are disappearing from the heart of the city districts. In their place there are either unused plots of land where garbage has been dumped or nearly all-paved squares with meager or no vegetation at all. Such areas, when handled properly, play an important role in the city because in addition to being zones for rendering a mild climate they perform social, cultural and hygienic functions. Aiming at demonstrating that proper handling of green areas can favorably influence the local microclimate, we have attempted to develop analysis from the point of view of bioclimatizing attributes of urban form and their relationship to the local microclimate found in the eight open areas located in the Ponta Negra Housing Complex in the city of Natal/RN
Resumo:
This research investigates the microclimate and the morphology features of the central campus of the UFRN, in Natal-RN, through the use of bioclimatic tools of analysis in order to assist the implementation of the campus´ Master Plan. It develops a diagnosis of the evolution and growth of the urban space surveyed by analyzing its initial plan and the basic urban conception behind it, as well as the morphology and typologies utilized. The study makes a qualitative analysis of the local microclimate by using Katzschner (1997) methodology, with land-use and topography maps, building heights, vegetation and soil covering. It also makes use of the methodology proposed by Oliveira (1993), which examines, from the bioclimatic standpoint, the human environment as related to the urban form (site and built mass). It identifies zones whose climatic characteristics are representative of the local microclimate and classifies them into areas to be strictly preserved, areas to be protected and areas to be improved. By means of the methodology for spatial and environmental assessment developed by Bustos Romero (2001), the survey selects characteristic points of each area in order to register the environmental data relative to the two basic seasons found in the region where the campus is located, that is, the dry and the rainy season, so that it can evaluate changes in the environment which might have been caused by urban density growth, by arborization or by the influence of the urban form. It then proceeds to a quantitative and statistical survey of the collected data with the purpose of evaluating the degree of influence of the identified features over the environmental variables along the different scales of approach. The study shows the existence of different microclimates and emphasizes the relevance of the bioclimatic analysis of the built environment as a tool for the decision-making process along the development of the Master Plan for UFRN Central Campus
Resumo:
The extent of the Brazilian Atlantic rainforest, a global biodiversity hotspot, has been reduced to less than 7% of its original range. Yet, it contains one of the richest butterfly fauna in the world. Butterflies are commonly used as environmental indicators, mostly because of their strict association with host plants, microclimate and resource availability. This research describes diversity, composition and species richness of frugivorous butterflies in a forest fragment in the Brazilian Northeast. It compares communities in different physiognomies and seasons. The climate in the study area is classified as tropical rainy, with two well defined seasons. Butterfly captures were made with 60 Van Someren-Rydon traps, randomly located within six different habitat units (10 traps per unit) that varied from very open (e.g. coconut plantation) to forest interior. Sampling was made between January and December 2008, for five days each month. I captured 12090 individuals from 32 species. The most abundant species were Taygetis laches, Opsiphanes invirae and Hamadryas februa, which accounted for 70% of all captures. Similarity analysis identified two main groups, one of species associated with open or disturbed areas and a second by species associated with shaded areas. There was a strong seasonal component in species composition, with less species and lower abundance in the dry season and more species and higher abundance in the rainy season. K-means analysis indicates that choice of habitat units overestimated faunal perceptions, suggesting less distinct units. The species Taygetis virgilia, Hamadryas chloe, Callicore pygas e Morpho achilles were associated with less disturbed habitats, while Yphthimoides sp, Historis odius, H. acheronta, Hamadryas feronia e Siderone marthesia likey indicate open or disturbed habitats. This research brings important information for conservation of frugivorous butterflies, and will serve as baseline for future projects in environmental monitoring
Resumo:
1974
Resumo:
The Simple Algorithm for Evapotranspiration Retrieving (SAFER) was used to estimate biophysical parameters and theenergy balance components in two different pasture experimental areas, in the São Paulo state, Brazil. The experimentalpastures consist in six rotational (RGS) and three continuous grazing systems (CGS) paddocks. Landsat-8 images from2013 and 2015 dry and rainy seasons were used, as these presented similar hydrological cycle, with 1,600 mm and 1,613mm of annual precipitation, resulting in 19 cloud-free images. Bands 1 to 7 and thermal bands 10 and 11 were used withweather data from a station located nearthe experimental area. NDVI, biomass, evapotranspiration and latent heat flux(λE) temporal values statistically differ CGS from RGS areas. Grazing systems influences the energy partition and theseresults indicate that RGS benefits biomass production, evapotranspiration and the microclimate, due higher LE values.SAFER is a feasible tool to estimate biophysical parameters and energy balance components in pasture and has potentialto discriminate continuous and rotation grazing systems in a temporal analysis.
Resumo:
Cities are small-scale complex socio-ecological systems, that host around 60% of world population. Ecosystem Services (ES) provided by urban ecosystems offer multiple benefits necessary to cope with present and future urban challenges. These ES include microclimate regulation, runoff control, as well as opportunities for mental and physical recreation, affecting citizen’s health and wellbeing. Creating a balance between urban development, land take containment, climate adaptation and availability of Urban Green Areas and their related benefits, can improve the quality of the lives of the inhabitants, the economic performance of the city and the social justice and cohesion aspects. This work starts analysing current literature around the topic of Ecosystem Services (ES), Green and Blue Infrastructure (GBI) and Nature-based Solutions (NBS) and their integration within current European and International sustainability policies. Then, the thesis focuses on the role of ES, GBI and NBS towards urban sustainability and resilience setting the basis to build the core methodological and conceptual approach of this work. The developed ES-based conceptual approach provides guidance on how to map and assess ES, to better inform policy making and to give the proper value to ES within urban context. The proposed interdisciplinary approach navigates the topic of mapping and assessing ES benefits in terms of regulatory services, with a focus on climate mitigation and adaptation, and cultural services, to enhance wellbeing and justice in urban areas. Last, this thesis proposes a trans-disciplinary and participatory approach to build resilience over time around all relevant urban ES. The two case studies that will be presented in this dissertation, the city of Bologna and the city of Barcelona, have been used to implement, tailor and test the proposed conceptual framework, raising valuable inputs for planning, policies and science.
Resumo:
La conservazione preventiva degli edifici storici e dei beni custoditi al loro interno rappresenta una sfida ad oggi condivisa a livello internazionale. Tale conservazione dipende da numerose variabili, tra le quali il microclima indoor gioca un ruolo decisivo. Il fine di questa tesi è verificare come lo studio del microclima indoor, supportato dalla simulazione virtuale e dalla conoscenza storica delle evoluzioni dell’edificio stesso (legate a modifiche impiantistiche; architettoniche; d’uso; ecc., nel corso degli anni), costituiscano una base conoscitiva fondamentale, da cui architetti e restauratori possono partire per definire strategie specifiche, volte alla conservazione preventiva del Patrimonio. Per fare questo, l’autore presenta le indagini svolte per tre casi-studio: la Sala 33 della Reggia di Venaria Reale, in provincia di Torino, Italia; la Biblioteca Generale Storica dell’Università di Salamanca, in Spagna; il Portico della Gloria, nartece della Cattedrale di Santiago de Compostela, in Spagna. La metodologia definita e adottata per l’analisi e l’interpretazione dei dati di ciascun caso-studio ha previsto la comprensione e la messa in relazione tra: scelte costruttive; vicende evolutive delle singole architetture; fattori che ne determinano il microclima, letti (o ipotizzati) nelle relative modifiche diacroniche; degrado delle architetture e dei beni che sono custoditi in esse. Infine, uno degli esiti più innovativi della ricerca è stata la definizione di due indici di rischio: sono stati infatti definiti due nuovi indici (Heritage Microclimate Risk -HMR- e Predicted Risk of Damage -PRD-) legati al microclima degli edifici che ospitano beni e manufatti che costituiscono il patrimonio storico artistico e culturale. Tali indici sono stati definiti tenendo conto di tutte le variabili da cui il microclima dipende e dei fattori che ne determinano l’evolversi nel tempo e nello spazio.
Resumo:
Protected crop production is a modern and innovative approach to cultivating plants in a controlled environment to optimize growth, yield, and quality. This method involves using structures such as greenhouses or tunnels to create a sheltered environment. These productive solutions are characterized by a careful regulation of variables like temperature, humidity, light, and ventilation, which collectively contribute to creating an optimal microclimate for plant growth. Heating, cooling, and ventilation systems are used to maintain optimal conditions for plant growth, regardless of external weather fluctuations. Protected crop production plays a crucial role in addressing challenges posed by climate variability, population growth, and food security. Similarly, animal husbandry involves providing adequate nutrition, housing, medical care and environmental conditions to ensure animal welfare. Then, sustainability is a critical consideration in all forms of agriculture, including protected crop and animal production. Sustainability in animal production refers to the practice of producing animal products in a way that minimizes negative impacts on the environment, promotes animal welfare, and ensures the long-term viability of the industry. Then, the research activities performed during the PhD can be inserted exactly in the field of Precision Agriculture and Livestock farming. Here the focus is on the computational fluid dynamic (CFD) approach and environmental assessment applied to improve yield, resource efficiency, environmental sustainability, and cost savings. It represents a significant shift from traditional farming methods to a more technology-driven, data-driven, and environmentally conscious approach to crop and animal production. On one side, CFD is powerful and precise techniques of computer modeling and simulation of airflows and thermo-hygrometric parameters, that has been applied to optimize the growth environment of crops and the efficiency of ventilation in pig barns. On the other side, the sustainability aspect has been investigated and researched in terms of Life Cycle Assessment analyses.
Resumo:
As people spend a third of their lives at work and, in most cases, indoors, the work environment assumes crucial importance. The continuous and dynamic interaction between people and the working environment surrounding them produces physiological and psychological effects on operators. Recognizing the substantial impact of comfort and well-being on employee satisfaction and job performance, the literature underscores the need for industries to implement indoor environment control strategies to ensure long-term success and profitability. However, managing physical risks (i.e., ergonomic and microclimate) in industrial environments is often constrained by production and energy requirements. In the food processing industry, for example, the safety of perishable products dictates storage temperatures that do not allow for operator comfort. Conversely, warehouses dedicated to non-perishable products often lack cooling systems to limit energy expenditure, reaching high temperatures in the summer period. Moreover, exceptional events, like the COVID-19 pandemic, introduce new constraints, with recommendations impacting thermal stress and respiratory health. Furthermore, the thesis highlights how workers' variables, particularly the aging process, reduce tolerance to environmental stresses. Consequently, prolonged exposure to environmental stress conditions at work results in cardiovascular disease and musculoskeletal disorders. In response to the global trend of an aging workforce, the thesis bridges a literature gap by proposing methods and models that integrate the age factor into comfort assessment. It aims to present technical and technological solutions to mitigate microclimate risks in industrial environments, ultimately seeking innovative ways to enhance the aging workforce's comfort, performance, experience, and skills. The research outlines a logical-conceptual scheme with three main areas of focus: analyzing factors influencing the work environment, recognizing constraints to worker comfort, and designing solutions. The results significantly contribute to science by laying the foundation for new research in worker health and safety in an ageing working population's extremely current industrial context.