986 resultados para Methods: laboratory: molecular
Resumo:
The regulation of phosphoinositide (PI) 3-kinase activities has been linked to many normal and disease-related processes, including cell survival, cell growth and proliferation, cell differentiation, cell motility, and intracellular vesicle trafficking. However, as the family of enzymes has now grown to include eight true members, in three functional classes, plus several related protein kinases that are also inhibited by the widely used PI 3-kinase selective inhibitors, wortmannin and LY294002, extended methodologies are required to identify which type of kinase is involved in a particular cellular process, or protein complex, under study. A robust in vitro PI 3-kinase assay, suitable for use with immunoprecipitates, or purified proteins, is described here together with a series of modifications of substrate and assay conditions that will aid researchers in the identification of the particular class and isoform of PI 3-kinase that is involved in a signaling process under investigation.
Resumo:
Most newly sequenced proteins are likely to adopt a similar structure to one which has already been experimentally determined. For this reason, the most successful approaches to protein structure prediction have been template-based methods. Such prediction methods attempt to identify and model the folds of unknown structures by aligning the target sequences to a set of representative template structures within a fold library. In this chapter, I discuss the development of template-based approaches to fold prediction, from the traditional techniques to the recent state-of-the-art methods. I also discuss the recent development of structural annotation databases, which contain models built by aligning the sequences from entire proteomes against known structures. Finally, I run through a practical step-by-step guide for aligning target sequences to known structures and contemplate the future direction of template-based structure prediction.
Resumo:
Intact, enveloped coronavirus particles vary widely in size and contour, and are thus refractory to study by traditional structural means such as X-ray crystallography. Electron microscopy (EM) overcomes some problems associated with particle variability and has been an important tool for investigating coronavirus ultrastructure. However, EM sample preparation requires that the specimen be dried onto a carbon support film before imaging, collapsing internal particle structure in the case of coronaviruses. Moreover, conventional EM achieves image contrast by immersing the specimen briefly in heavy-metal-containing stain, which reveals some features while obscuring others. Electron cryomicroscopy (cryo-EM) instead employs a porous support film, to which the specimen is adsorbed and flash-frozen. Specimens preserved in vitreous ice over holes in the support film can then be imaged without additional staining. Cryo-EM, coupled with single-particle image analysis techniques, makes it possible to examine the size, structure and arrangement of coronavirus structural components in fully hydrated, native virions. Two virus purification procedures are described.
Resumo:
Proteins are commonly identified through enzymatic digestion and generation of short sequence tags or fingerprints of peptide masses by mass spectrometry. Separation methods, such as liquid chromatography and electrophoresis, are often used to fractionate complex protein or peptide mixtures and these separations also provide information on the different species, such as molecular weight and isoelectric point from electrophoresis and hydrophobicity in reversed-phase chromatography. These are also properties that can be predicted from amino acid sequences derived from genomic sequences and used in protein identification. This chapter reviews recently introduced methods based on retention time prediction to extract information from chromatographic separations and the applications to protein identification in organisms with small and large genomes. Novel data on retention time prediction of posttranslationally modified peptides is also presented.
Resumo:
In recent years, our increased understanding of the complex signal transduction mechanisms that regulate cellular function has fueled huge advances in all aspects of biomedical science and cell biology. Platelet and megakaryocyte function is no exception to this. In the last 10 yr our understanding of the receptor biochemistry and the systems that they control has been pivotal in the development of new strategies to inhibit platelet function and thereby prevent thrombosis. Experimental techniques have become more and more elegant, however; the basic toolbox that a researcher requires to study signaling in platelets and megakaryoctes is described in this and several subsequent chapters.
Resumo:
The separation of mixtures of proteins by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) is a technique that is widely used—and, indeed, this technique underlies many of the assays and analyses that are described in this book. While SDS-PAGE is routine in many labs, a number of issues require consideration before embarking on it for the first time. We felt, therefore, that in the interest of completeness of this volume, a brief chapter describing the basics of SDS-PAGE would be helpful. Also included in this chapter are protocols for the staining of SDS-PAGE gels to visualize separated proteins, and for the electrotransfer of proteins to a membrane support (Western blotting) to enable immunoblotting, for example. This chapter is intended to complement the chapters in this book that require these techniques to be performed. Therefore, detailed examples of why and when these techniques could be used will not be discussed here.
Resumo:
In recent years, we have witnessed major advances in our understanding of the mammalian cell cycle and how it is regulated. Normal mammalian cellular proliferation is tightly regulated at each phase of the cell cycle by the activation and deactivation of a series of proteins that constitute the cell cycle machinery. This review article describes the various phases of the mammalian cell cycle and focuses on the cell cycle regulatory molecules that act at each stage to ensure normal cellular progression.
Resumo:
Matrix-assisted laser desorption/ionization (MALDI) is a key technique in mass spectrometry (MS)-based proteomics. MALDI MS is extremely sensitive, easy-to-apply, and relatively tolerant to contaminants. Its high-speed data acquisition and large-scale, off-line sample preparation has made it once again the focus for high-throughput proteomic analyses. These and other unique properties of MALDI offer new possibilities in applications such as rapid molecular profiling and imaging by MS. Proteomics and its employment in Systems Biology and other areas that require sensitive and high-throughput bioanalytical techniques greatly depend on these methodologies. This chapter provides a basic introduction to the MALDI methodology and its general application in proteomic research. It describes the basic MALDI sample preparation steps and two easy-to-follow examples for protein identification including extensive notes on these topics with practical tips that are often not available in the Subheadings 2 and 3 of research articles.