837 resultados para Metals and alloys
Resumo:
In 1995-1997 three oceanographic cruises to the White Sea were undertaken in the framework of the INTAS project 94-391, and a multi-disciplinary geochemical study of the major North Dvina estuary has been carried out. Distribution of temperature, salinity and concentration of suspended matter in water columm, as well as contents of Al, Fe, Mn, Co, Cu, Ni, Cr, Pb, Zn, and organic carbon contents in suspended matter and sediments of the North Dvina estuary were determined. Most of the metals and organic matter studied appear to be of terrestrial origin, since the main source of investigated elements in the estuary is river run-off. It was found that metals incorporated in minerals are absolutely prevailing forms in estuarine sediments, they comprise up to 60-99% of total metal contents. Two zones of metal accumulation in the sediments were found in the North Dvina estuary. These zones are considered as local geochemical barriers within a major river-sea barrier. Distribution of most elements studied in the sediments of the North Dvina estuary is controlled by grain size variability in the sediments. Analysis of data on heavy metal contents in the sediments and bivalves of the North Dvina estuary did not reveal any anthropogenic heavy metal pollution in the region.
Resumo:
Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically Al and Ti alloys) under different LSP irradiation conditions are presented. In particular, the analysis of the residual stress profiles obtained under different irradiation parameters and the evaluation of the corresponding induced surface properties as roughness and wear resistance are presented.
Resumo:
Strontium modification is known to alter the amount, characteristics, and distribution of porosity in Al-Si castings. Although many theories have been proposed to account for these effects, most can be considered inadequate because of their failure to resolve contradictions and discrepancies in the literature. In an attempt to critically appraise some of these theories, the amount, distribution, and morphology of porosity were examined in sand-cast plates of Sr-free and Sr-containing pure Al, Al-l wt pet Si, and Al-9 wt pet Si alloys. Statistical significance testing was used to verify apparent trends in the porosity data. No apparent differences in the amount, distribution, and morphology of porosity were observed between Sr-free and Sr-containing alloys with no or very small eutectic volume fractions. However, Sr modification significantly changed the amount, distribution, and morphology of porosity in alloys with a significant volume fraction of eutectic. ne addition of Sr reduced porosity in the hot spot region of the casting, and the pores became well dispersed and rounded. This result can be explained by considering the combined effect of the casting design and the differences in the pattern of eutectic solidification between unmodified and Sr-modified alloys.
Resumo:
In this work, the different adsorption properties of H and alkali metal atoms on the basal plane of graphite are studied and compared using a density functional method on the same model chemistry level. The results show that H prefers the on-top site while alkali metals favor the middle hollow site of graphite basal plane due to the unique electronic structures of H, alkali metals, and graphite. H has a higher electronegativity than carbon, preferring to form a covalent bond with C atoms, whereas alkaline metals have lower electronegativity, tending to adsorb on the highest electrostatic potential sites. During adsorption, there are more charges transferred from alkali metal to graphite than from H to graphite.
Resumo:
The in situ real time measurement of the regression rate of a melting interface (RRMI) is performed by the ultrasonic measurement system reported here. The RRMI is the rate at which a solid/liquid interface (SLI) moves along a metallic rod while burning in an oxygen-enriched atmosphere and is an important flatnmability indicator. The ultrasonic transducer and associated equipment used to drive the transducer and record the echo signal is described, along with the process that transforms the acquired signals into a RRMI value. Test rods of various metals and geometric shapes were burned at several test conditions in different test facilities. The RRMI results with quantified errors are presented and reviewed. The effect of reduced gravity on burning metals is important to space-applications and RRMI results obtained in a reduced gravity environment are also presented.
Resumo:
The aim of this work was to design and build an equipment which can detect ferrous and non-ferrous objects in conveyed commodities, discriminate between them and locate the object along the belt and on the width of the belt. The magnetic induction mechanism was used as a means of achieving the objectives of this research. In order to choose the appropriate geometry and size of the induction field source, the field distributions of different source geometries and sizes were studied in detail. From these investigations it was found the square loop geometry is the most appropriate as a field generating source for the purpose of this project. The phenomena of field distribution in the conductors was also investigated. An equipment was designed and built at the preliminary stages of thework based on a flux-gate magnetometer with the ability to detect only ferrous objects.The instrument was designed such that it could be used to detect ferrous objects in the coal conveyors of power stations. The advantages of employing this detector in the power industry over the present ferrous metal electromagnetic separators were also considered. The objectives of this project culminated in the design and construction of a ferrous and non-ferrous detector with the ability to discriminate between ferrous and non-ferrous metals and to locate the objects on the conveying system. An experimental study was carried out to test the performance of the equipment in the detection of ferrous and non-ferrous objects of a given size carried on the conveyor belt. The ability of the equipment to discriminate between the types of metals and to locate the object on the belt was also evaluated experimentally. The benefits which can be gained from the industrial implementations of the equipment were considered. Further topics which may be investigated as an extension of this work are given.
Resumo:
The Ming deposit, Newfoundland Appalachians, is a metamorphosed (upper greenschist to lower amphibolite facies), Cambro-Ordovician, bimodalmafic volcanogenic massive sulfide (VMS) deposit that consists of several, spatially-associated, elongated orebodies composed of stratabound semimassive to massive sulfides and/or discordant sulfide stringers in a rhyodacitic footwall. Copper is the main commodity; however, the deposit contains precious metal-bearing zones with elevated Au grades. In this study, field observations, microscopy, and micro-analytical tools including electron microprobe, laser ablation inductively coupled plasma mass spectrometry, and secondary ion mass spectrometry were used to constrain the relative timing of precious metal emplacement, the physico-chemical conditions of hydrothermal fluid precipitation, and the sources of sulfur, precious metals, semi-metals and metals. The ore mineral assemblage is complex and indicates an intermediate sulfidation state. Pyrite and chalcopyrite are the dominant ore minerals with minor sphalerite and pyrrhotite, and trace galena, arsenopyrite and cubanite. Additional trace phases include tellurides, NiSb phases, sulfosalts, electrum, AgHg±Au alloys, and oxides. Silver phases and precious metals occur predominantly in semi-massive and massive sulfides as free grains, and as grains spatially associated with arsenopyrite and/or sulfosalts. Precious metal phases occurring between recrystallized pyrite and within cataclastic pyrite are rare. Hence, the complex ore assemblage and textures strongly suggest syngenetic precious metal emplacement, whereas metamorphism and deformation only internally and locally remobilized precious metal phases. The ore assemblage formed from reduced, acidic hydrothermal fluids over a range of temperatures (≈350 to below 260ºC). The abundance of telluride and Ag-bearing tetrahedrite, however, varies strongly between the different orebodies indicating variable ƒTe₂, ƒSe₂, mBi, and mSb within the hydrothermal fluids. The variations in the concentrations of semi-metals and metals (As, Bi, Hg, Sb, Se, Te), as well as Au and Ag, were due to variations in temperature but also to a likely contribution of magmatic fluids into the VMS hydrothermal system from presumably different geothermal reservoirs. Sulfur isotope studies indicate at least two sulfur sources: sulfur from thermochemically-reduced seawater sulfate and igneous sulfur. The source of igneous sulfur is the igneous footwall, direct magmatic fluid/volatiles, or both. Upper greenschist to lower amphibolite metamorphic conditions and deformation had no significant effect on the sulfur isotope composition of the sulfides at the Ming deposit.
Resumo:
This dissertation presents a systematic and analytic overview of most of the information related to stones, minerals, and stone masonry which is found in the corpus of Plutarch of Chaeronea, combined with most of the information on metals and metalworking which is connected to the former. This survey is intended as a first step in the reconstruction of the full landscape of ‘chemical’ ideas occurring in Plutarch’s writings; accordingly, the exposition of the relevant passages, the assessment of their possible interpretations, the discussion on their implications, and their contextualization in the ancient traditions have been conducted with a special interest in the ‘mineralogical’ and ‘metallurgic’ themes developed in the frame of natural philosophy and meteorology. Although in this perspective physical etiology could have come to acquire central prominence, non-etiological information on Plutarch’s ideas on the nature and behaviour of stones and metals has been treated as equally relevant to reach a fuller understanding of how Plutarch conceptualized and visualized them in general, in- and outside the frame of philosophical explanation. Such extensive outline of Plutarch’s ideas on stones and metals is a prerequisite for an accurate inquiry into his use of the two in analogies, metaphors, and symbols: to predispose this kind of research was another aim of the present survey, and this aim has contributed to shape it; moreover, a special attention has been paid to the analysis of analogical and figurative speaking due to the nature itself of a large part of Plutarch’s references to stones and metals, which are either metaphorical, presented in close association with metaphors, or framed in analogies. Much of the information used for the present overview has been extracted —always with supporting argumentation— from the implications of such metaphors and analogies.