948 resultados para Metabolism of the nitrogen
EFFECT OF RATION SIZE ON THE GROWTH AND ENERGY BUDGET OF THE GRASS CARP, CTENOPHARYNGODON-IDELLA VAL
Resumo:
Young grass carp (12-13 g) were kept at five ration levels ranging from starvation to ad libitum feeding at 30-degrees-C. They were fed duckweed. Food consumption, absorption efficiency and growth were determined directly, and metabolism and nitrogenous excretion calculated indirectly from energy and nitrogen budgets, respectively. The relationship between specific growth rate and ration size was linear. Absorption efficiency for energy was not affected by ration size and averaged 50.6 +/- 0.57% (mean +/- s.e.). Depending on ration size, energy lost in excretion accounted for 4.5-5.9% of the food energy, energy channelled to metabolism accounted for 34.4-48.3% of the food energy, and energy retained as growth accounted for 6.7-11.9% of the food energy. Regardless of ration, a constant proportion of food energy (30.7%) was accounted for by feeding metabolism (total metabolism minus fasting metabolism). The energy budget at the maximum ration was: 100 C = 49.1F + 4.5U + 3.6R(fa) + 30.9R(fe) + 11.9G, where C, F, U, R(fa), R(fe) and G represent food consumption, faecal production, excretion, fasting metabolism, feeding metabolism and growth, respectively.
Resumo:
Effects of SiO2 encapsulation and rapid thermal annealing on the optical properties of a GaNAs/GaAs single quantum well (SQW) are studied by low-temperature photoluminescence (LTPL). After annealing at 800degreesC for 30s, a blueshift of the LTPL peak energy for the SiO2-capped region is 25meV and that for the bare region is 0.8meV. The results can attribute to the nitrogen reorganization in the GaNAs/GaAs SQW. It is also shown that the nitrogen reorganization can be obviously enhanced by SiO2 cap-layer. A simple model is used to describe the SiO2-enhanced blueshift of the LTPL peak energy. The estimated activation energy of the N atomic reorganization for the samples annealing with and without SiO2 cap-layer are 2.9eV and 3.1eV, respectively.
Resumo:
An investigation of hardening the buried oxides (BOX) in separation by implanted oxygen (SIMOX) silicon-on-insulator (SOI) wafers to total-dose irradiation has been made by implanting nitrogen into the BOX layers with a constant dose at different implantation energies. The total-dose radiation hardness of the BOX layers is characterized by the high frequency capacitance-voltage (C-V) technique. The experimental results show that the implantation of nitrogen into the BOX layers can increase the BOX hardness to total-dose irradiation. Particularly, the implantation energy of nitrogen ions plays an important role in improving the radiation hardness of the BOX layers. The optimized implantation energy being used for a nitrogen dose, the hardness of BOX can be considerably improved. In addition, the C-V results show that there are differences between the BOX capacitances due to the different nitrogen implantation energies.
Resumo:
The effect of implanting nitrogen into buried oxide on the top gate oxide hardness against total irradiation does has been investigated with three nitrogen implantation doses (8 x 10(15), 2 x 10(16) and 1 x 10(17) cm(-2)) for partially depleted SOI PMOSFET. The experimental results reveal the trend of negative shift of the threshold voltages of the studied transistors with the increase of nitrogen implantation dose before irradiation. After the irradiation with a total dose of 5 x 10(5) rad(Si) under a positive gate voltage of 2V, the threshold voltage shift of the transistors corresponding to the nitrogen implantation dose 8 x 10(15) cm(-2) is smaller than that of the transistors without implantation. However, when the implantation dose reaches 2 x 10(16) and 1 x 10(17) cm(-2), for the majority of the tested transistors, their top gate oxide was badly damaged due to irradiation. In addition, the radiation also causes damage to the body-drain junctions of the transistors with the gate oxide damaged. All the results can be interpreted by tracing back to the nitrogen implantation damage to the crystal lattices in the top silicon.
Resumo:
The photoluminescence of a GaAsN alloy with 0.1% nitrogen has been studied under pressures up to 8.5 GPa at 33, 70, and 130 K. At ambient pressure, emissions from both the GaAsN alloy conduction band edge and discrete nitrogen-related bound states are observed. Under applied pressure, these two types of emissions shift with rather different pressure coefficients: about 40 meV/GPa for the nitrogen-related features, and about 80 meV/GPa for the alloy band-edge emission. Beyond 1 GPa, these discrete nitrogen-related peaks broaden and evolve into a broad band. Three new photoluminescence bands emerge on the high-energy side of the broad band, when the pressure is above 2.5, 4.5, and 5.25 GPa, respectively, at 33 K. In view of their relative energy positions and pressure behavior, we have attributed these new emissions to the nitrogen-pair states NN3 and NN4, and the isolated nitrogen state N-x. In addition, we have attributed the high-energy component of the broad band formed above 1 GPa to resonant or near-resonant NN1 and NN2, and its main body to deeper cluster centers involving more than two nitrogen atoms. This study reveals the persistence of all the paired and isolated nitrogen-related impurity states, previously observed only in the dilute doping limit, into a rather high doping level. Additionally, we find that the responses of different N-related states to varying N-doping levels differ significantly and in a nontrivial manner.
Resumo:
The effects, caused by the process of the implantation of nitrogen in the buried oxide layer of SIMOX wafer, on the characteristics of partially depleted silicon-on-insulator nMOSFET have been studied. The experimental results show that the channel electron mobilities of the devices fabricated on the SIMON (separation by implanted oxygen and nitrogen) wafers are lower than those of the devices made on the SIMOX (separation by implanted oxygen) wafers. The devices corresponding to the lowest implantation dose have the lowest mobility within the range of the implantation dose given in this paper. The value of the channel electron mobility rises slightly and tends to a limit when the implantation dose becomes greater. This is explained in terms of the rough Si/SiO2 interface due to the process of implantation of nitrogen. The increasing negative shifts of the threshold voltages for the devices fabricated on the SIMON wafers are also observed with the increase of implanting dose of nitrogen. However, for the devices fabricated on the SIMON wafers with the lowest dose of implanted nitrogen in this paper, their threshold voltages are slightly larger on the average than those prepared on the SIMOX wafers. The shifts are considered to be due to the increment of the fixed oxide charge in SiO2 layer and the change of the density of the interface-trapped charge with the value and distribution included. In particular, the devices fabricated on the SIMON wafers show a weakened kink effect, compared to the ones made on the SIMOX wafers.
Resumo:
With different implantation energies, nitrogen ions were implanted into SIMOX wafers in our work. And then the wafers were subsequently annealed to form separated by implantation of oxygen and nitrogen (SIMON) wafers. Secondary ion mass spectroscopy (SIMS) was used to observe the distribution of nitrogen and oxygen in the wafers. The result of electron paramagnetic resonance (EPR) was suggested by the dandling bonds densities in the wafers changed with N ions implantation energies. SIMON-based SIS capacitors were made. The results of the C-V test confirmed that the energy of nitrogen implantation affects the properties of the wafers, and the optimum implantation energy was determined. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
With different implantation energies, nitrogen ions were implanted into SIMOX wafers in our work. And then the wafers were subsequently annealed to form separated by implantation of oxygen and nitrogen (SIMON) wafers. Secondary ion mass spectroscopy (SIMS) was used to observe the distribution of nitrogen and oxygen in the wafers. The result of electron paramagnetic resonance (EPR) was suggested by the dandling bonds densities in the wafers changed with N ions implantation energies. SIMON-based SIS capacitors were made. The results of the C-V test confirmed that the energy of nitrogen implantation affects the properties of the wafers, and the optimum implantation energy was determined. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Effects of SiO2, encapsulation and rapid thermal annealing (RTA) on the optical properties of GaNAs/GaAs single quantum well (SQW) were studied by low temperature photoluminescence (PL). A blueshift of the PL peak energy for both the SiO2-capped region and the bare region was observed. The results were attributed to the nitrogen reorganization in the GaNAs/GaAs SQW. It was also shown that the nitrogen reorganization was obviously enhanced by SiO2 cap-layer. A simple model [1] was used to describe the SiO2-enhanced blueshift of the low temperature PL peak energy.
Resumo:
摘要: In order to improve the total-dose radiation hardness of the buried oxide of separation by implanted oxygen silicon-on-insulator wafers, nitrogen ions were implanted into the buried oxide with a dose of 10(16)cm(-2), and subsequent annealing was performed at 1100 degrees C. The effect of annealing time on the radiation hardness of the nitrogen implanted wafers has been studied by the high frequency capacitance-voltage technique. The results suggest that the improvement of the radiation hardness of the wafers can be achieved through a shorter time annealing after nitrogen implantation. The nitrogen-implanted sample with the shortest annealing time 0.5 h shows the highest tolerance to total-dose radiation. In particular, for the 1.0 and 1.5 h annealing samples, both total dose responses were unusual. After 300-krad(Si) irradiation, both the shifts of capacitance-voltage curve reached a maximum, respectively, and then decreased with increasing total dose. In addition, the wafers were analysed by the Fourier transform infrared spectroscopy technique, and some useful results have been obtained.