980 resultados para Meta Data, Semantic Web, Software Maintenance, Software Metrics
Resumo:
The Internet of Things (IoT) is the next industrial revolution: we will interact naturally with real and virtual devices as a key part of our daily life. This technology shift is expected to be greater than the Web and Mobile combined. As extremely different technologies are needed to build connected devices, the Internet of Things field is a junction between electronics, telecommunications and software engineering. Internet of Things application development happens in silos, often using proprietary and closed communication protocols. There is the common belief that only if we can solve the interoperability problem we can have a real Internet of Things. After a deep analysis of the IoT protocols, we identified a set of primitives for IoT applications. We argue that each IoT protocol can be expressed in term of those primitives, thus solving the interoperability problem at the application protocol level. Moreover, the primitives are network and transport independent and make no assumption in that regard. This dissertation presents our implementation of an IoT platform: the Ponte project. Privacy issues follows the rise of the Internet of Things: it is clear that the IoT must ensure resilience to attacks, data authentication, access control and client privacy. We argue that it is not possible to solve the privacy issue without solving the interoperability problem: enforcing privacy rules implies the need to limit and filter the data delivery process. However, filtering data require knowledge of how the format and the semantics of the data: after an analysis of the possible data formats and representations for the IoT, we identify JSON-LD and the Semantic Web as the best solution for IoT applications. Then, this dissertation present our approach to increase the throughput of filtering semantic data by a factor of ten.
Resumo:
La capacità di estrarre entità da testi, collegarle tra loro ed eliminare possibili ambiguità tra di esse è uno degli obiettivi del Web Semantico. Chiamato anche Web 3.0, esso presenta numerose innovazioni volte ad arricchire il Web con dati strutturati comprensibili sia dagli umani che dai calcolatori. Nel reperimento di questi temini e nella definizione delle entities è di fondamentale importanza la loro univocità. Il nostro orizzonte di lavoro è quello delle università italiane e le entities che vogliamo estrarre, collegare e rendere univoche sono nomi di professori italiani. L’insieme di informazioni di partenza, per sua natura, vede la presenza di ambiguità. Attenendoci il più possibile alla sua semantica, abbiamo studiato questi dati ed abbiamo risolto le collisioni presenti sui nomi dei professori. Arald, la nostra architettura software per il Web Semantico, estrae entità e le collega, ma soprattutto risolve ambiguità e omonimie tra i professori delle università italiane. Per farlo si appoggia alla semantica dei loro lavori accademici e alla rete di coautori desumibile dagli articoli da loro pubblicati, rappresentati tramite un data cluster. In questo docu delle università italiane e le entities che vogliamo estrarre, collegare e rendere univoche sono nomi di professori italiani. Partendo da un insieme di informazioni che, per sua natura, vede la presenza di ambiguità, lo abbiamo studiato attenendoci il più possibile alla sua semantica, ed abbiamo risolto le collisioni che accadevano sui nomi dei professori. Arald, la nostra architettura software per il Web Semantico, estrae entità, le collega, ma soprattutto risolve ambiguità e omonimie tra i professori delle università italiane. Per farlo si appoggia alla semantica dei loro lavori accademici e alla rete di coautori desumibile dagli articoli da loro pubblicati tramite la costruzione di un data cluster.
Resumo:
The increasing amount of data available about software systems poses new challenges for re- and reverse engineering research, as the proposed approaches need to scale. In this context, concerns about meta-modeling and analysis techniques need to be augmented by technical concerns about how to reuse and how to build upon the efforts of previous research. Moose is an extensive infrastructure for reverse engineering evolved for over 10 years that promotes the reuse of engineering efforts in research. Moose accommodates various types of data modeled in the FAMIX family of meta-models. The goal of this half-day workshop is to strengthen the community of researchers and practitioners who are working in re- and reverse engineering, by providing a forum for building future research starting from Moose and FAMIX as shared infrastructure.
Resumo:
The increasing amount of data available about software systems poses new challenges for re- and reverse engineering research, as the proposed approaches need to scale. In this context, concerns about meta-modeling and analysis techniques need to be augmented by technical concerns about how to reuse and how to build upon the efforts of previous research. MOOSE is an extensive infrastructure for reverse engineering evolved for over 10 years that promotes the reuse of engineering efforts in research. MOOSE accommodates various types of data modeled in the FAMIX family of meta-models. The goal of this half-day workshop is to strengthen the community of researchers and practitioners who are working in re- and reverse engineering, by providing a forum for building future research starting from MOOSE and FAMIX as shared infrastructure.
Resumo:
Software metrics offer us the promise of distilling useful information from vast amounts of software in order to track development progress, to gain insights into the nature of the software, and to identify potential problems. Unfortunately, however, many software metrics exhibit highly skewed, non-Gaussian distributions. As a consequence, usual ways of interpreting these metrics --- for example, in terms of "average" values --- can be highly misleading. Many metrics, it turns out, are distributed like wealth --- with high concentrations of values in selected locations. We propose to analyze software metrics using the Gini coefficient, a higher-order statistic widely used in economics to study the distribution of wealth. Our approach allows us not only to observe changes in software systems efficiently, but also to assess project risks and monitor the development process itself. We apply the Gini coefficient to numerous metrics over a range of software projects, and we show that many metrics not only display remarkably high Gini values, but that these values are remarkably consistent as a project evolves over time.
Resumo:
Internet of Things based systems are anticipated to gain widespread use in industrial applications. Standardization efforts, like 6L0WPAN and the Constrained Application Protocol (CoAP) have made the integration of wireless sensor nodes possible using Internet technology and web-like access to data (RESTful service access). While there are still some open issues, the interoperability problem in the lower layers can now be considered solved from an enterprise software vendors' point of view. One possible next step towards integration of real-world objects into enterprise systems and solving the corresponding interoperability problems at higher levels is to use semantic web technologies. We introduce an abstraction of real-world objects, called Semantic Physical Business Entities (SPBE), using Linked Data principles. We show that this abstraction nicely fits into enterprise systems, as SPBEs allow a business object centric view on real-world objects, instead of a pure device centric view. The interdependencies between how currently services in an enterprise system are used and how this can be done in a semantic real-world aware enterprise system are outlined, arguing for the need of semantic services and semantic knowledge repositories. We introduce a lightweight query language, which we use to perform a quantitative analysis of our approach to demonstrate its feasibility.
Resumo:
The Semantic Web is an extension of the traditional Web in which meaning of information is well defined, thus allowing a better interaction between people and computers. To accomplish its goals, mechanisms are required to make explicit the semantics of Web resources, to be automatically processed by software agents (this semantics being described by means of online ontologies). Nevertheless, issues arise caused by the semantic heterogeneity that naturally happens on the Web, namely redundancy and ambiguity. For tackling these issues, we present an approach to discover and represent, in a non-redundant way, the intended meaning of words in Web applications, while taking into account the (often unstructured) context in which they appear. To that end, we have developed novel ontology matching, clustering, and disambiguation techniques. Our work is intended to help bridge the gap between syntax and semantics for the Semantic Web construction
Resumo:
The Semantic Web is an extension of the traditional Web in which meaning of information is well defined, thus allowing a better interaction between people and computers. To accomplish its goals, mechanisms are required to make explicit the semantics of Web resources, to be automatically processed by software agents (this semantics being described by means of online ontologies). Nevertheless, issues arise caused by the semantic heterogeneity that naturally happens on the Web, namely redundancy and ambiguity. For tackling these issues, we present an approach to discover and represent, in a non-redundant way, the intended meaning of words in Web applications, while taking into account the (often unstructured) context in which they appear. To that end, we have developed novel ontology matching, clustering, and disambiguation techniques. Our work is intended to help bridge the gap between syntax and semantics for the Semantic Web construction.
Resumo:
Linked data offers a promising setting to encode, publish and share metadata of resources. As the matter of fact, it is already adopted by data producers such as European Environment Agency, US and some EU Governs, whose first ambition is to share (meta)data making their processes more effective and transparent. Such as an increasing interest and involvement of data providers surely represents a genuine witness of the web of data success, but in a longer perspective, frameworks supporting linked data consumers in their decision making processes will be a compelling need. In this respect, the talk is introducing SSONDE, a framework enabling in detailed comparison, ranking and selection of linked data resources through the analysis of their RDF ontology driven metadata. SSONDE implements an instance similarity especially designed to support in resource selection, namely the process stakeholders engage to choose a set of resources suitable for a given analysis purpose: (i) it deploys an asymmetric similarity assessment to emphasize information about gains and losses the stakeholders get adopting a resource in place of another; (ii) it relies on an explicit formalization of contexts to tailor the similarity assessment with respect to specific user-defined selection goals. The talk aims at providing an insight on SSONDE instance similarity and it will briefly describe some examples of SSONDE deployment in the context of linked data consumption.
Resumo:
Background: One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of such computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e.g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows. Results: We present the application of the workflow-centric RO model for our bioinformatics case study. Three workflows were produced following recently defined Best Practices for workflow design. By modelling the experiment as an RO, we were able to automatically query the experiment and answer questions such as “which particular data was input to a particular workflow to test a particular hypothesis?”, and “which particular conclusions were drawn from a particular workflow?”. Conclusions: Applying a workflow-centric RO model to aggregate and annotate the resources used in a bioinformatics experiment, allowed us to retrieve the conclusions of the experiment in the context of the driving hypothesis, the executed workflows and their input data. The RO model is an extendable reference model that can be used by other systems as well.
Resumo:
ACM Computing Classification System (1998): J.2.
Resumo:
Software architecture plays an essential role in the high level description of a system design, where the structure and communication are emphasized. Despite its importance in the software engineering process, the lack of formal description and automated verification hinders the development of good software architecture models. In this paper, we present an approach to support the rigorous design and verification of software architecture models using the semantic web technology. We view software architecture models as ontology representations, where their structures and communication constraints are captured by the Web Ontology Language (OWL) and the Semantic Web Rule Language (SWRL). Specific configurations on the design are represented as concrete instances of the ontology, to which their structures and dynamic behaviors must conform. Furthermore, ontology reasoning tools can be applied to perform various automated verification on the design to ensure correctness, such as consistency checking, style recognition, and behavioral inference.
Resumo:
Wireless Sensor Network (WSN) systems have become more and more popular in our modern life. They have been widely used in many areas, such as smart homes/buildings, context-aware devices, military applications, etc. Despite the increasing usage, there is a lack of formal description and automated verification for WSN system design. In this paper, we present an approach to support the rigorous verification of WSN modeling using the Semantic Web technology We use Web Ontology Language (OWL) and Semantic Web Rule Language (SWRL) to define a meta-ontology for the modeling of WSN systems. Furthermore, we apply ontology reasoners to perform automated verification on customized WSN models and their instances. We demonstrate and evaluate our approach through a Light Control System (LCS) as the case study.
Resumo:
POSTDATA is a 5 year's European Research Council (ERC) Starting Grant Project that started in May 2016 and is hosted by the Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain. The context of the project is the corpora of European Poetry (EP), with a special focus on poetic materials from different languages and literary traditions. POSTDATA aims to offer a standardized model in the philological field and a metadata application profile (MAP) for EP in order to build a common classification of all these poetic materials. The information of Spanish, Italian and French repertoires will be published in the Linked Open Data (LOD) ecosystem. Later we expect to extend the model to include additional corpora. There are a number of Web Based Information Systems in Europe with repertoires of poems available to human consumption but not in an appropriate condition to be accessible and reusable by the Semantic Web. These systems are not interoperable; they are in fact locked in their databases and proprietary software, not suitable to be linked in the Semantic Web. A way to make this data interoperable is to develop a MAP in order to be able to publish this data available in the LOD ecosystem, and also to publish new data that will be created and modeled based on this MAP. To create a common data model for EP is not simple since the existent data models are based on conceptualizations and terminology belonging to their own poetical traditions and each tradition has developed an idiosyncratic analytical terminology in a different and independent way for years. The result of this uncoordinated evolution is a set of varied terminologies to explain analogous metrical phenomena through the different poetic systems whose correspondences have been hardly studied – see examples in González-Blanco & Rodríguez (2014a and b). This work has to be done by domain experts before the modeling actually starts. On the other hand, the development of a MAP is a complex task though it is imperative to follow a method for this development. The last years Curado Malta & Baptista (2012, 2013a, 2013b) have been studying the development of MAP's in a Design Science Research (DSR) methodological process in order to define a method for the development of MAPs (see Curado Malta (2014)). The output of this DSR process was a first version of a method for the development of Metadata Application Profiles (Me4MAP) (paper to be published). The DSR process is now in the validation phase of the Relevance Cycle to validate Me4MAP. The development of this MAP for poetry will follow the guidelines of Me4MAP and this development will be used to do the validation of Me4MAP. The final goal of the POSTDATA project is: i) to be able to publish all the data locked in the WIS, in LOD, where any agent interested will be able to build applications over the data in order to serve final users; ii) to build a Web platform where: a) researchers, students and other final users interested in EP will be able to access poems (and their analyses) of all databases; b) researchers, students and other final users will be able to upload poems, the digitalized images of manuscripts, and fill in the information concerning the analysis of the poem, collaboratively contributing to a LOD dataset of poetry.
Resumo:
Security defects are common in large software systems because of their size and complexity. Although efficient development processes, testing, and maintenance policies are applied to software systems, there are still a large number of vulnerabilities that can remain, despite these measures. Some vulnerabilities stay in a system from one release to the next one because they cannot be easily reproduced through testing. These vulnerabilities endanger the security of the systems. We propose vulnerability classification and prediction frameworks based on vulnerability reproducibility. The frameworks are effective to identify the types and locations of vulnerabilities in the earlier stage, and improve the security of software in the next versions (referred to as releases). We expand an existing concept of software bug classification to vulnerability classification (easily reproducible and hard to reproduce) to develop a classification framework for differentiating between these vulnerabilities based on code fixes and textual reports. We then investigate the potential correlations between the vulnerability categories and the classical software metrics and some other runtime environmental factors of reproducibility to develop a vulnerability prediction framework. The classification and prediction frameworks help developers adopt corresponding mitigation or elimination actions and develop appropriate test cases. Also, the vulnerability prediction framework is of great help for security experts focus their effort on the top-ranked vulnerability-prone files. As a result, the frameworks decrease the number of attacks that exploit security vulnerabilities in the next versions of the software. To build the classification and prediction frameworks, different machine learning techniques (C4.5 Decision Tree, Random Forest, Logistic Regression, and Naive Bayes) are employed. The effectiveness of the proposed frameworks is assessed based on collected software security defects of Mozilla Firefox.