928 resultados para Mesoporous Zeolite
Resumo:
This work proposes the fabrication of a novel targeted drug delivery system based on mesoporous silica-biopolymer hybrids that can release drugs in response to biological stimuli present in cancer cells. The proposed system utilizes mesoporous silica nanoparticles as a carrier to host the drug molecules. A bio-polymer cap is attached onto these particles which serves the multiple functions of drug retention, targeting and bio-responsive drug release. The biopolymer chondroitin sulphate used here is a glycosaminoglycan that can specifically bind to receptors over-expressed in cancer cells. This molecule also possesses the property of disintegrating upon exposure to enzymes over-expressed in cancer cells. When these particles interact with cancer cells, the chondroitin sulphate present on the surface recognizes and attaches onto the CD44 receptors facilitating the uptake of these particles. The phagocytised particles are then exposed to the degradative enzymes, such as hyaluronidase present inside the cancer cells, which degrade the cap resulting in drug release. By utilizing a cervical cancer cell line we have demonstrated the targetability and intracellular delivery of hydrophobic drugs encapsulated in these particles. It was observed that the system was capable of enhancing the anticancer activity of the hydrophobic drug curcumin. Overall, we believe that this system might prove to be a valuable candidate for targeted and bioresponsive drug delivery.
Resumo:
The blocked diisocyanate crosslinked chitosan membrane was modified by incorporating different mass% of NaY zeolite. The physico-chemical properties of resulting composite membranes were studied using Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The mechanical properties of the membranes were studied using universal testing machine (UTM). After measuring the equilibrium swelling, membranes were subjected to pervaporation for separation of water-isopropanol mixtures. Both flux and selectivity were increased with increasing NaY zeolite content in the membranes. The membrane containing 40 mass% of NaY zeolite exhibited the highest separation selectivity of 11,241 with a flux of 11.37 x 10(-2) kg/m(2) h for 10 mass% of water in the feed. The total flux and flux of water are almost overlapping each other, suggesting that these membranes could be effectively used to break the azeotropic point of water-isopropanol mixture. From the temperature dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. All the composite membranes exhibited lower activation energy compared to crosslinked membrane, indicating that the permeants require less energy during the process because of molecular sieving action attributed to the presence of sodalite and super cages in the framework of Nay zeolite. The Henry's mode of sorption dominates the process, giving an endothermic contribution. (C) 2014 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
Resumo:
To harvest solar energy more efficiently, novel Ag2S/Bi2WO6 heterojunctions were synthesized by a hydrothermal route. This novel photocatalyst was synthesized by impregnating Ag2S into a Bi2WO6 semiconductor by a hydrothermal route without any surfactants or templates. The as prepared structures were characterized by multiple techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmet-Teller (BET) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), UV-vis diffuse reflection spectroscopy (DRS) and photoluminescence (PL). The characterization results suggest mesoporous hierarchical spherical structures with a high surface area and improved photo response in the visible spectrum. Compared to bare Bi2WO6, Ag2S/Bi2WO6 exhibited much higher photocatalytic activity towards the degradation of dye Rhodamine B (RhB). Although silver based catalysts are easily eroded by photogenerated holes, the Ag2S/Bi2WO6 photocatalyst was found to be highly stable in the cyclic experiments. Based on the results of BET, Pl and DRS analysis, two possible reasons have been proposed for the enhanced visible light activity and stability of this novel photocatalyst: (1) broadening of the photoabsorption range and (2) efficient separation of photoinduced charge carriers which does not allow the photoexcited electrons to accumulate on the conduction band of Ag2S and hence prevents the photocorrosion.
Resumo:
The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup, and is now being considered as an intermediate step in the possible route of biomass conversion into fuels and chemicals. Recently, it has been shown that a hydrophobic, large pore, silica molecular sieve having the zeolite beta structure and containing framework Sn4+ (Sn-Beta) is able to isomerize glucose into fructose in aqueous media. Here, I have investigated how this catalyst converts glucose to fructose and show that it is analogous to that achieved with metalloenzymes. Specifically, glucose partitions into the molecular sieve in the pyranose form, ring opens to the acyclic form in the presence of the Lewis acid center (framework Sn4+), isomerizes into the acyclic form of fructose and finally ring closes to yield the furanose product. Akin to the metalloenzyme, the isomerization step proceeds by intramolecular hydride transfer from C2 to C1. Extraframework tin oxides located within hydrophobic channels of the molecular sieve that exclude liquid water can also isomerize glucose to fructose in aqueous media, but do so through a base-catalyzed proton abstraction mechanism. Extraframework tin oxide particles located at the external surface of the molecular sieve crystals or on amorphous silica supports are not active in aqueous media but are able to perform the isomerization in methanol by a base-catalyzed proton abstraction mechanism. Post-synthetic exchange of Na+ with Sn-Beta alters the glucose reaction pathway from the 1,2 intramolecular hydrogen shift (isomerization) to produce fructose towards the 1,2 intramolecular carbon shift (epimerization) that forms mannose. Na+ remains exchanged onto silanol groups during reaction in methanol solvent, leading to a near complete shift in selectivity towards glucose epimerization to mannose. In contrast, decationation occurs during reaction in aqueous solutions and gradually increases the reaction selectivity to isomerization at the expense of epimerization. Decationation and concomitant changes in selectivity can be eliminated by addition of NaCl to the aqueous reaction solution. Thus, framework tin sites with a proximal silanol group are the active sites for the 1, 2 intramolecular hydride shift in the isomerization of glucose to fructose, while these sites with Na-exchanged silanol group are the active sites for the 1, 2 intramolecular carbon shift in epimerization of glucose to mannose.
Resumo:
Zeolite Y has been used as the host to generate CdS nanoclusters. The location of CdS nanoclusters inside zeolite hosts was confirmed by the blue-shifted reflection absorption spectra with respect to that of bulk CdS materials. But which kind of cage inside zeolite Y, sodalite cage or supercage, was preferred for the CdS clusters remained unclear. In this paper, we conducted positron annihilation spectroscopy (PAS) measurements for the first time on a series of CdS/Y zeolite samples and concluded that CdS clusters were not located in supercages but in smaller sodalite cages. The stability of CdS clusters inside the sodalite units was due to the coordination of Cd atoms with the framework oxygen atoms of the double six-ring windows. Moreover, PAS revealed some important information of surface states existing on the interfacial layers between CdS clusters and zeolite Y. (C) 2001 Elsevier Science B,V, All rights reserved.
Resumo:
AgI clusters in zeolite-Y (AgI/Y) were prepared by Ag+ exchange followed by reaction with NaI in solution. The formation of the clusters was determined by transmission electron microscopy and Auger electron spectroscopy. The clusters were uniform and even in size, 1.0-2.0 nm. The fluorescence spectrum of the clusters consists of two emission bands, which are attributed to AgI and Ag clusters, respectively. Photostimulated luminescence (PSL) is observed by stimulation at 675 or at 840 nm. The PSL spectrum of AgI/Y is consistent with the emission spectrum of Ag clusters and thus the PSL is considered to be caused by the charge transfer or carrier migration from the zeolite framework or from the AgI clusters to the Ag clusters. The appearance of PSL indicates that these materials may find application as a medium for erasable optical memory. (C) 1998 American Institute of Physics. [S0021-8979(98)02407-4].
Resumo:
The porous medium has an important effect on hydrate formation. In this paper, the formation process and the gas storage capacity of the methane hydrate were investigated with A-type zeolite and Sodium Dodecyl Sulfate (SDS) existing in the system. The results show that A-type zeolite can influence methane hydrate formation. At the temperature of 273.5 K and pressure of 8.3 MPa, the distilled water with A-type zeolite can form methane hydrate with gaseous methane in 12 hours. The formation process of the system with A-type zeolite was quite steady and the amount of A-type zeolite can influence the gas storage capacity significantly. The adding of A-type zeolite with 0.067 g.(g water)(-1) into 2 x 10(-3) g.g(-1) SDS-water solution can increase the gas storage capacity, and the maximum increase rate was 31%. Simultaneously the promotion effect on hydrate formation of 3A-type zeolite is much more obvious than that of 5A-type zeolite when the water adding amounts are 0.033 g.g(-1) and 0.067 g.g(-1) at the experimental conditions.
Resumo:
The TiO2-supported zeolite with core/shell heterostructure was fabricated by coating aluminosilicate zeolite (ASZ) on the TiO2 inoculating seed via in situ hydrothermal synthesis. The catalysts were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), nitrogen physisorption (BET), and Fourier transform infrared spectroscopy (FT-IR). The surface acidity of the catalysts was measured by pyridine-TPD method. The catalytic performance of the catalysts for ethanol dehydration to ethylene was also investigated. The results show that the TiO2-supported zeolite composite catalyst with core/shell heterostructure exhibits prominent conversion efficiency for ethanol dehydration to ethylene.
Resumo:
Microporous HZSM-5 zeolite and mesoporous SiO2 supported Ru-Co catalysts of various Ru adding amounts were prepared and evaluated for Fischer-Tropsch synthesis (FTS) of gasoline-range hydrocarbons (C-5-C-12). The tailor-made Ru-Co/SiO2/HZSM-5 catalysts possessed both micro- and mesopores, which accelerated hydrocracking/hydroisomerization of long-chain products and provided quick mass transfer channels respectively during FTS. In the same time. Ru increased Cor reduction degree by hydrogen spillover, thus CO conversion of 62.8% and gasoline-range hydrocarbon selectivity of 47%, including more than 14% isoparaffins, were achieved simultaneously when Ru content was optimized at 1 wt% in Ru-Co/SiO2/HZSM-5 catalyst.
Resumo:
TiO2/4A zeolite composite catalysts were prepared by coating TiO2 on 4A zeolite via liquid phase deposition. The TiO 2/4A zeolite composite catalysts wtih higher surface weak acidity and lower mediate strong acidity exhibit much better catalytic performance on ethanol dehydration to ethylene compared with 4A zeolite. It is suggested that the TiO2 promoter could improve the effective Lewis acidity of composite catalyst which consequently enhanced the catalytic performance.