935 resultados para Mercury concentrations
Resumo:
Mercury (Hg) contamination problem in the United Sates has been an important issue due to its potential threat to human and ecological health. This thesis presents a study of two Hg-contaminated sites along the East Fork Poplar Creek (EFPC) at Oak Ridge. The top soils from the terrestrial areas, along with the soils from three vertical soil horizons at the EFPC bank were sampled and analyzed for total-Hg (THg), methyl-Hg, total-organic-carbon (TOC), and pH. The stream bank soils were also analyzed for the stable-Hg-isotopes (198Hg, 199Hg, 200Hg, 201Hg, and 202Hg). Furthermore, some of the soil samples (n=7) from the same study sites were investigated for phytoavailability of mercury as measured by degree of Hg translocation in aboveground biomass of Impatiens walleriana plants grown in the soils.^ The results showed a significant difference (p<0.001) in THg concentrations for the forest soils (42.40±4.98 mg/kg) and the grassland soils (8.71±2.30 mg/kg). The higher THg and methyl-Hg concentrations were commensurate with the higher TOC content in the soils (p<0.001). Also, the THg concentrations for the upstream site was higher (129.08±34.14 mg/kg) than the downstream site (24.31±3.47 mg/kg). The two sites also differed in their stable Hg isotope compositions (p<0.001 for δ199Hg). The stable isotope analysis indicated the increased level of mass dependent isotopic fractionation with increasing depths along the EFPC bank. The difference between the two study sites was also prominent in case of the Hg uptake by the plants, with higher Hg uptake from the upstream soils compared to that from the downstream soils. A significant correlation, r=0.93 p<0.01, was observed between the Hg uptake and the soil-THg concentrations. THg was higher in the leaves (1161.87±310.01 μg/kg) than in the flowers (206.13±55.23 μg/kg) or the stems (634.54±403.35μg/kg). ^ The level of Hg contamination increased with decreasing distance from the point source and was highly influenced by plants/microbes, soil-organic-content, and Hg-speciation. The isotopic study indicated the existence of an additional Hg source in the EFPC watershed, possibly atmospheric Hg-deposition. These findings are worth taking into account while planning any Hg remediation effort and developing Hg loading criteria as per the National Pollutant Discharge Elimination System (NPDES) Program.^
Resumo:
Reduced organic sulfur (ROS) compounds are environmentally ubiquitous and play an important role in sulfur cycling as well as in biogeochemical cycles of toxic metals, in particular mercury. Development of effective methods for analysis of ROS in environmental samples and investigations on the interactions of ROS with mercury are critical for understanding the role of ROS in mercury cycling, yet both of which are poorly studied. Covalent affinity chromatography-based methods were attempted for analysis of ROS in environmental water samples. A method was developed for analysis of environmental thiols, by preconcentration using affinity covalent chromatographic column or solid phase extraction, followed by releasing of thiols from the thiopropyl sepharose gel using TCEP and analysis using HPLC-UV or HPLC-FL. Under the optimized conditions, the detection limits of the method using HPLC-FL detection were 0.45 and 0.36 nM for Cys and GSH, respectively. Our results suggest that covalent affinity methods are efficient for thiol enrichment and interference elimination, demonstrating their promising applications in developing a sensitive, reliable, and useful technique for thiol analysis in environmental water samples. The dissolution of mercury sulfide (HgS) in the presence of ROS and dissolved organic matter (DOM) was investigated, by quantifying the effects of ROS on HgS dissolution and determining the speciation of the mercury released from ROS-induced HgS dissolution. It was observed that the presence of small ROS (e.g., Cys and GSH) and large molecule DOM, in particular at high concentrations, could significantly enhance the dissolution of HgS. The dissolved Hg during HgS dissolution determined using the conventional 0.22 μm cutoff method could include colloidal Hg (e.g., HgS colloids) and truly dissolved Hg (e.g., Hg-ROS complexes). A centrifugal filtration method (with 3 kDa MWCO) was employed to characterize the speciation and reactivity of the Hg released during ROS-enhanced HgS dissolution. The presence of small ROS could produce a considerable fraction (about 40% of total mercury in the solution) of truly dissolved mercury (< 3 kDa), probably due to the formation of Hg-Cys or Hg-GSH complexes. The truly dissolved Hg formed during GSH- or Cys-enhanced HgS dissolution was directly reducible (100% for GSH and 40% for Cys) by stannous chloride, demonstrating its potential role in Hg transformation and bioaccumulation.
Resumo:
Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79°N). Here we present the first central Arctic Ocean (79-90°N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81-85°N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150-200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.
Resumo:
This study examined developmental toxicity of different mercury compounds, including some used in traditional medicines. Medaka (Oryzias latipes) embryos were exposed to 0.001-10 µM concentrations of MeHg, HgCl2, α-HgS (Zhu Sha), and β-HgS (Zuotai) from stage 10 (6-7 hpf) to 10 days post fertilization (dpf). Of the forms of mercury in this study, the organic form (MeHg) proved the most toxic followed by inorganic mercury (HgCl2), both producing embryo developmental toxicity. Altered phenotypes included pericardial edema with elongated or tube heart, reduction of eye pigmentation, and failure of swim bladder inflation. Both α-HgS and β-HgS were less toxic than MeHg and HgCl2. Total RNA was extracted from survivors three days after exposure to MeHg (0.1 µM), HgCl2 (1 µM), α-HgS (10 µM), or β-HgS (10 µM) to examine toxicity-related gene expression. MeHg and HgCl2 markedly induced metallothionein (MT) and heme oxygenase-1 (Ho-1), while α-HgS and β-HgS failed to induce either gene. Chemical forms of mercury compounds proved to be a major determinant in their developmental toxicity.
Resumo:
The main question, posed in the work scheme before laboratory analysis was started, was expressed as follows: Do marked seasonal fluctuations occur in trace element content of the sediment surface, and what are the probable influences of factors such as changing hydrographical parameters, plankton sequence etc. ? Special attention was paid to elements known as pollutants, for example mercury. Within this framework samples have been analysed for their contents of manganese, iron, zinc, lead, and mercury. The amounts of silica and organically-bound carbon serve in most cases as reference values for the trace element content. On sand temporary conditions of increased C org content raise the concentrations of all determined elements. Especially the values reached for mercury in July are worth nothing. It is concluded that Zn, Pb, and Hg tend to enrich with respect to C org as the decomposition of organic matter progresses. On mud-sand flocculation and precipitation of Mn/Fe-hydroxides probably represent an additional concentrating factor for the other elements as the relationship of the results for zinc and manganese shows. Manganese may indicate a seasonally related concentrating cycle at the sediment surface.
Resumo:
Frost flowers are ice crystals that grow on refreezing sea ice leads in Polar Regions by wicking brine from the sea ice surface and accumulating vapor phase condensate. These crystals contain high concentrations of mercury (Hg) and are believed to be a source of reactive halogens, but their role in Hg cycling and impact on the fate of Hg deposited during atmospheric mercury depletion events (AMDEs) are not well understood. We collected frost flowers growing on refreezing sea ice near Barrow, Alaska (U.S.A.) during an AMDE in March 2009 and measured Hg concentrations and Hg stable isotope ratios in these samples to determine the origin of Hg associated with the crystals. We observed decreasing Delta199Hg values in the crystals as they grew from new wet frost flowers (mean Delta199Hg = 0.77 ± 0.13 per mil, 1 s.d.) to older dry frost flowers (mean Delta199Hg = 0.10 ± 0.05 per mil, 1 s.d.). Over the same time period, mean Hg concentrations in these samples increased from 131 ± 6 ng/L (1 s.d.) to 180 ± 28 ng/L (1 s.d.). Coupled with a previous study of Hg isotopic fractionation during AMDEs, these results suggest that Hg initially deposited to the local snowpack was subsequently reemitted during photochemical reduction reactions and ultimately accumulated on the frost flowers. As a result of this process, frost flowers may lead to enhanced local retention of Hg deposited during AMDEs and may increase Hg loading to the Arctic Ocean.
Resumo:
High-resolution records of Ca and Sr were obtained from shipboard XRF analyses of bulk sediments in five gravity cores from the southern Cape Basin, South Atlantic Ocean. Sr/Ca ratios display regular glacial/interglacial variations of 14-40% and reveal a close correlation with the SPECMAP record, minimum Sr/Ca ratios appearing during glacial (delta18 O) maxima, distinct increases during periods of deglaciation, and highest ratios in interstadials. Shifts in carbonate-producing phytoplankton and/or zooplankton assemblages over glacial/interglacial cycles are suggested to be the main cause for the observed variations in Sr/Ca patterns. Quick assessment of the relationship between Sr/Ca ratios and the SPECMAP record made it possible to easily transfer an age model to the newly collected cores already during the cruise.
Resumo:
Breast milk is regarded as an ideal source of nutrients for the growth and development of neonates, but it can also be a potential source of pollutants. Mothers can be exposed to different contaminants as a result of their lifestyle and environmental pollution. Mercury (Hg) and arsenic (As) could adversely affect the development of fetal and neonatal nervous system. Some fish and shellfish are rich in selenium (Se), an essential trace element that forms part of several enzymes related to the detoxification process, including glutathione S-transferase (GST). The goal of this study was to determine the interaction between Hg, As and Se and analyze its effect on the activity of GST in breast milk. Milk samples were collected from women between day 7 and 10 postpartum. The GST activity was determined spectrophotometrically; total Hg, As and Se concentrations were measured by atomic absorption spectrometry. To explain the possible association of Hg, As and Se concentrations with GST activity in breast milk, generalized linear models were constructed. The model explained 44% of the GST activity measured in breast milk. The GLM suggests that GST activity was positively correlated with Hg, As and Se concentrations. The activity of the enzyme was also explained by the frequency of consumption of marine fish and shellfish in the diet of the breastfeeding women.
Resumo:
This work evaluates the mercury (Hg) contamination status (sediments and biota) of the Bijagós archipelago, off the coast of Guinea-Bissau. Sediments exhibited very low concentrations (<1-12ngg(-1)), pointing to negligible sources of anthropogenic Hg in the region. Nevertheless, Hg is well correlated to the fine fraction, aluminium, and loss on ignition, indicating the effect of grain size and organic matter content on the presence of Hg in sediments. Mercury in the bivalves Tagelus adansoni and Senilia senilis did not vary considerably among sites, ranging within narrow intervals (0.09-0.12 and 0.12-0.14μgg(-1) (dry weight), respectively). Divergent substrate preferences/feeding tactics may justify slight differences between species. The value 11ngg(-1) is proposed as the sediment background concentration for this West-African coastal region, and concentrations within the interval 8-10ngg(-1) (wet weight) may be considered as reference range for S. senilis and T. adansoni in future monitoring studies.
Resumo:
Aquatic organisms are considered excellent biomarkers of mercury (Hg) occurrence in the environment. Selenium (Se) acts in antagonism to this metal, stimulating its elimination, and reducing its toxicity. In this paper, tilapia (Oreochromis niloticus) were chronically acclimated in sub-lethal Hg2+, Hg2+ + Se4+ and Hg2+ + Se6+ concentrations. Distribution and bioaccumulation of both elements were evaluated in fish tissues. The kidney was the main target of the Hg and Se uptake, and the presence of Hg induced the Se hepatic elimination. The Hg bioaccumulation in the gill, spleen and heart were higher in the presence of Se6+ than in the presence of Se4+.
Resumo:
Given their central role in mercury (Hg) excretion and suitability as reservoirs, bird feathers are useful Hg biomonitors. Nevertheless, the interpretation of Hg concentrations is still questioned as a result of a poor knowledge of feather physiology and mechanisms affecting Hg deposition. Given the constraints of feather availability to ecotoxicological studies, we tested the effect of intraindividual differences in Hg concentrations according to feather type (body vs. flight feathers), position in the wing and size (mass and length) in order to understand how these factors could affect Hg estimates. We measured Hg concentration of 154 feathers from 28 un-moulted barn owls (Tyto alba), collected dead on roadsides. Median Hg concentration was 0.45 (0.076–4.5) mg kg-1 in body feathers, 0.44 (0.040–4.9) mg kg-1 in primary and 0.60 (0.042–4.7) mg kg-1 in secondary feathers, and we found a poor effect of feather type on intra-individual Hg levels. We also found a negative effect of wing feather mass on Hg concentration but not of feather length and of its position in the wing. We hypothesize that differences in feather growth rate may be the main driver of between-feather differences in Hg concentrations, which can have implications in the interpretation of Hg concentrations in feathers. Finally, we recommend that, whenever possible, several feathers from the same individual should be analysed. The five innermost primaries have lowest mean deviations to both betweenfeather and intra-individual mean Hg concentration and thus should be selected under restrictive sampling scenarios.
Resumo:
Current Brazilian law regarding water fluoridation classification is dichotomous with respect to the risks of and benefits for oral diseases, and fluoride (F) concentrations less than 0.6 or above 0.8 mg F/L are considered outside the normal limits. Thus, the law does not consider that both caries and fluorosis are dependent on the dosage and duration of fluoride exposure because they are both chronic diseases. Therefore, this study evaluated the quality of water fluoridation in Maringá, PR, Brazil, considering a new classification for the concentration of F in water the supply, based on the anticaries benefit and risk of fluorosis (CECOL/USP, 2011). Water samples (n = 325) were collected monthly over one year from 28 distribution water networks: 20 from treatment plants and 8 from artesian wells. F concentrations were determined using a specific ion electrode. The average F concentration was 0.77 mg F/L (ppm F), ranging from 0.44 to 1.22 mg F/L. Considering all of the water samples analyzed, 83.7% of them presented from 0.55 to 0.84 mg F/L, and according to the new classification used, they would provide maximum anticaries benefit with a low risk of fluorosis. This percentage was lower (75.4%) in the water samples supplied from artesian wells than from those distributed by the treatment plant (86%). In conclusion, based on the new classification of water F concentrations, the quality of water fluoridation in Maringá is adequate and is within the range of the best balance between risk and benefit.
Resumo:
Ozone and inhalable particulate matter are the major air pollutants in the Metropolitan Area of São Paulo, Brazil, a region that has more than 19 million inhabitants and approximately 7 million registered vehicles. Proximity of roadways, adjacent land use, and local circulation are just some of the factors that can affect the results of monitoring of pollutant concentrations. The so-called weekend effect (higher ozone concentrations on weekends than on weekdays) might be related to the fact that concentrations of ozone precursors, such as nitrogen oxides (NOx) and Non Methane-Hydrocarbon (NMHC), are relatively lower on weekends. This phenomenon has been reported in some areas of the United States since the 1970s. The differences between the concentrations of ozone in period of weekend and weekday, were obtained from analysis of data hourly average of CETESB for 2004, studied the precursors to the formation of troposphere ozone, the meteorological variables and traffic profile for RMSP. Because of the proximity to sources of emissions from the station Pinheiros showed higher concentrations of NO and NO² and greater variations to the periods weekend and weekday. With fewer vehicles circulating during the weekend, and consequently less emission of pollutants, it has cleaner air and less concentration of NO and NO², there is the ideal setting to the formation of troposphere ozone, despite the lower concentration of NO². The proximity with the source emissions, aided by the increased availability of solar radiation and the presence of ozone precursors, were factors conditions for the occurrence of weekend effect.
Resumo:
BACKGROUND: Original sevoflurane (Sevo A) is made with water, while a generic sevoflurane (Sevocris) is produced with propylene glycol as a stabilizing additive. We investigated whether the original and generic sevoflurane preparations differed in terms of their minimum alveolar concentration (MAC) values and hemodynamic effects. METHODS: Sixteen pigs weighing 31.6±1.8 kg were randomly assigned to the Sevo A or Sevocris groups. After anesthesia induction via mask with the appropriate sevoflurane preparation (6% in 100% oxygen), the MAC was determined for each animal. Hemodynamic and oxygenation parameters were measured at 0.5 MAC, 1 MAC and 1.5 MAC. Histopathological analyses of lung parenchyma were performed. RESULTS: The MAC in the Sevo A group was 4.4±0.5%, and the MAC in the Sevocris group was 4.1±0.7%. Hemodynamic and metabolic parameters presented significant differences in a dose-dependent pattern as expected, but they did not differ between groups. Cardiac indices and arterial pressures decreased in both groups when the sevoflurane concentration increased from 0.5 to 1 and 1.5 MAC. The oxygen delivery index (DO2I) decreased significantly at 1.5 MAC. CONCLUSION: Propylene glycol as an additive for sevoflurane seems to be as safe as a water additive, at least in terms of hemodynamic and pulmonary effects.