973 resultados para Membrane separation
Resumo:
This paper presents an analysis of membrane reactor (MR) operation and design for enhanced hydrogen production from the water gas shift (WGS) reaction. It has been established that membrane reactors can enhance an equilibrium limited reaction through product separation. However, the detailed effects of reactor setup, membrane configuration and catalyst volume have yet to be properly analysed for this reaction. This paper investigates new ideas for membrane reactors such as the development of new catalytic films, for improved interaction between the reaction and separation zones. Current membrane reactors utilise a packed bed of catalyst within the membrane tube, utilising a large volume of catalyst to drive reaction. This is still inefficient and provides only limited benefits over conventional WGS reactors. New reactor configurations look to optimise the interactive effects between reaction and separation to provide improved operation. In this paper, thin film catalysts were produced using dip coating and spray coating techniques. This technique produced catalyst coatings with good thickness, though the abrasion strength of the dip coated catalyst was quite low. The catalyst was tested in a packed bed reactor for temperature activity at low temperatures and catalyst activity at varying levels of excess water
Resumo:
Silicalite-1/carbon-graphite composite membranes have been prepared using a standard hydrothermal synthesis method and characterized by XRD, SEM, TGA, BET and permeation experiments. Single gas permeation fluxes and binary mixtures separation and selectivity data are reported for methane, ethane and propane using the composite membranes. Carbon-graphite oxidized for 4 h prior to membrane preparation had the most promising separation properties. The permeation fluxes for the binary mixtures reflect that of the single component flux ratios. At 20 °C the membranes show high separation selectivity toward lighter component in binary mixtures. Single gas permeances for methane and ethane were found to decrease with increasing temperatures while that of propane fluctuates. © 2007 Elsevier Inc. All rights reserved.
Resumo:
Proteome analysis by conventional approaches is biased against hydrophobic membrane proteins, many of which are also of low abundance. We have isolated plasma membrane sheets from bloodstream forms of Trypanosoma brucei by subcellular fractionation, and then applied a battery of complementary protein separation and identification techniques to identify a large number of proteins in this fraction. The results of these analyses have been combined to generate a subproteome for the pellicular plasma membrane of bloodstream forms of T. brucei as well as a separate subproteome for the pellicular cytoskeleton. In parallel, we have used in silico approaches to predict the relative abundance of proteins potentially expressed by bloodstream form trypanosomes, and to identify likely polytopic membrane proteins, providing quality control for the experimentally defined plasma membrane subproteome. We show that the application of multiple high-resolution proteomic techniques to an enriched organelle fraction is a valuable approach for the characterisation of relatively intractable membrane proteomes. We present here the most complete analysis of a protozoan plasma membrane proteome to date and show the presence of a large number of integral membrane proteins, including 11 nucleoside/nucleobase transporters, 15 ion pumps and channels and a large number of adenylate cyclases hitherto listed as putative proteins.
Resumo:
In order to study the structure and function of a protein, it is generally required that the protein in question is purified away from all others. For soluble proteins, this process is greatly aided by the lack of any restriction on the free and independent diffusion of individual protein particles in three dimensions. This is not the case for membrane proteins, as the membrane itself forms a continuum that joins the proteins within the membrane with one another. It is therefore essential that the membrane is disrupted in order to allow separation and hence purification of membrane proteins. In the present review, we examine recent advances in the methods employed to separate membrane proteins before purification. These approaches move away from solubilization methods based on the use of small surfactants, which have been shown to suffer from significant practical problems. Instead, the present review focuses on methods that stem from the field of nanotechnology and use a range of reagents that fragment the membrane into nanometre-scale particles containing the protein complete with the local membrane environment. In particular, we examine a method employing the amphipathic polymer poly(styrene-co-maleic acid), which is able to reversibly encapsulate the membrane protein in a 10 nm disc-like structure ideally suited to purification and further biochemical study.
Resumo:
The present work investigates the fouling mechanisms of PVDF hollow fibre membrane (0.03 μm) during the dead end ultrafiltration at a fixed permeate flux (outside to inside configuration) of complex synthetic seawater composed by humic acids, alginic acids, inorganic particles and numerous salts at high concentrations. Short term ultrafiltration experiments at 100 L.h-1.m-2 show that the optimal specific filtered volume seems to be equal to 50 L.m-2. A residual fouling resistance equal to 2.1010 m-1 is added after each cycle of filtration during 8h of ultrafiltration at 100 L.h-1.m-2 and 50 L.m-2. Most of the fouling is reversible (80%). Organics are barely (15% of humic acids) retained by the membrane. Backwash efficiency drops during operation which induces less organics into backwash waters. Humic acids could preferentially accumulate on the membrane early in the ultrafiltration and alginic acids after the build-up of a fouling pre-layer. Colloids and particulates could accumulate inside a heterogeneous fouling layer and/or the concentrate compartment of the membrane module before being more largely recovered inside backwash waters.
Resumo:
International audience
Resumo:
This work is concerned with the genetic basis of normal human pigmentation variation. Specifically, the role of polymorphisms within the solute carrier family 45 member 2 (SLC45A2 or membrane associated transporter protein; MATP) gene were investigated with respect to variation in hair, skin and eye colour ― both between and within populations. SLC45A2 is an important regulator of melanin production and mutations in the gene underly the most recently identified form of oculocutaneous albinism. There is evidence to suggest that non-synonymous polymorphisms in SLC45A2 are associated with normal pigmentation variation between populations. Therefore, the underlying hypothesis of this thesis is that polymorphisms in SLC45A2 will alter the function or regulation of the protein, thereby altering the important role it plays in melanogenesis and providing a mechanism for normal pigmentation variation. In order to investigate the role that SLC45A2 polymorphisms play in human pigmentation variation, a DNA database was established which collected pigmentation phenotypic information and blood samples of more than 700 individuals. This database was used as the foundation for two association studies outlined in this thesis, the first of which involved genotyping two previously-described non-synonymous polymorphisms, p.Glu272Lys and p.Phe374Leu, in four different population groups. For both polymorphisms, allele frequencies were significantly different between population groups and the 272Lys and 374Leu alleles were strongly associated with black hair, brown eyes and olive skin colour in Caucasians. This was the first report to show that SLC45A2 polymorphisms were associated with normal human intra-population pigmentation variation. The second association study involved genotyping several SLC45A2 promoter polymorphisms to determine if they also played a role in pigmentation variation. Firstly, the transcription start site (TSS), and hence putative proximal promoter region, was identified using 5' RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE). Two alternate TSSs were identified and the putative promoter region was screened for novel polymorphisms using denaturing high performance liquid chromatography (dHPLC). A novel duplication (c.–1176_–1174dupAAT) was identified along with other previously described single nucleotide polymorphisms (c.–1721C>G and c.–1169G>A). Strong linkage disequilibrium ensured that all three polymorphisms were associated with skin colour such that the –1721G, +dup and –1169A alleles were associated with olive skin in Caucasians. No linkage disequilibrium was observed between the promoter and coding region polymorphisms, suggesting independent effects. The association analyses were complemented with functional data, showing that the –1721G, +dup and –1169A alleles significantly decreased SLC45A2 transcriptional activity. Based on in silico bioinformatic analysis that showed these alleles remove a microphthalmia-associated transcription factor (MITF) binding site, and that MITF is a known regulator of SLC45A2 (Baxter and Pavan, 2002; Du and Fisher, 2002), it was postulated that SLC45A2 promoter polymorphisms could contribute to the regulation of pigmentation by altering MITF binding affinity. Further characterisation of the SLC45A2 promoter was carried out using luciferase reporter assays to determine the transcriptional activity of different regions of the promoter. Five constructs were designed of increasing length and their promoter activity evaluated. Constitutive promoter activity was observed within the first ~200 bp and promoter activity increased as the construct size increased. The functional impact of the –1721G, +dup and –1169A alleles, which removed a MITF consensus binding site, were assessed using electrophoretic mobility shift assays (EMSA) and expression analysis of genotyped melanoblast and melanocyte cell lines. EMSA results confirmed that the promoter polymorphisms affected DNA-protein binding. Interestingly, however, the protein/s involved were not MITF, or at least MITF was not the protein directly binding to the DNA. In an effort to more thoroughly characterise the functional consequences of SLC45A2 promoter polymorphisms, the mRNA expression levels of SLC45A2 and MITF were determined in melanocyte/melanoblast cell lines. Based on SLC45A2’s role in processing and trafficking TYRP1 from the trans-Golgi network to stage 2 melanosmes, the mRNA expression of TYRP1 was also investigated. Expression results suggested a coordinated expression of pigmentation genes. This thesis has substantially contributed to the field of pigmentation by showing that SLC45A2 polymorphisms not only show allele frequency differences between population groups, but also contribute to normal pigmentation variation within a Caucasian population. In addition, promoter polymorphisms have been shown to have functional consequences for SLC45A2 transcription and the expression of other pigmentation genes. Combined, the data presented in this work supports the notion that SLC45A2 is an important contributor to normal pigmentation variation and should be the target of further research to elucidate its role in determining pigmentation phenotypes. Understanding SLC45A2’s function may lead to the development of therapeutic interventions for oculocutaneous albinism and other disorders of pigmentation. It may also help in our understanding of skin cancer susceptibility and evolutionary adaptation to different UV environments, and contribute to the forensic application of pigmentation phenotype prediction.
Resumo:
Use of Unmanned Aerial Vehicles (UAVs) in support of government applications has already seen significant growth and the potential for use of UAVs in commercial applications is expected to rapidly expand in the near future. However, the issue remains on how such automated or operator-controlled aircraft can be safely integrated into current airspace. If the goal of integration is to be realized, issues regarding safe separation in densely populated airspace must be investigated. This paper investigates automated separation management concepts in uncontrolled airspace that may help prepare for an expected growth of UAVs in Class G airspace. Not only are such investigations helpful for the UAV integration issue, the automated separation management concepts investigated by the authors can also be useful for the development of new or improved Air Traffic Control services in remote regions without any existing infrastructure. The paper will also provide an overview of the Smart Skies program and discuss the corresponding Smart Skies research and development effort to evaluate aircraft separation management algorithms using simulations involving realworld data communication channels, and verified against actual flight trials. This paper presents results from a unique flight test concept that uses real-time flight test data from Australia over existing commercial communication channels to a control center in Seattle for real-time separation management of actual and simulated aircraft. The paper also assesses the performance of an automated aircraft separation manager.