985 resultados para Membrane fusion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MPS2 (monopolar spindle two) gene is one of several genes required for the proper execution of spindle pole body (SPB) duplication in the budding yeast Saccharomyces cerevisiae (Winey et al., 1991). We report here that the MPS2 gene encodes an essential 44-kDa protein with two putative coiled-coil regions and a hydrophobic sequence. Although MPS2 is required for normal mitotic growth, some null strains can survive; these survivors exhibit slow growth and abnormal ploidy. The MPS2 protein was tagged with nine copies of the myc epitope, and biochemical fractionation experiments show that it is an integral membrane protein. Visualization of a green fluorescent protein (GFP) Mps2p fusion protein in living cells and indirect immunofluorescence microscopy of 9xmyc-Mps2p revealed a perinuclear localization with one or two brighter foci of staining corresponding to the SPB. Additionally, immunoelectron microscopy shows that GFP-Mps2p localizes to the SPB. Our analysis suggests that Mps2p is required as a component of the SPB for insertion of the nascent SPB into the nuclear envelope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gene ptc4+ encodes one of four type 2C protein phosphatases (PP2C) in the fission yeast Schizosaccharomyces pombe. Deletion of ptc4+ is not lethal; however, Δptc4 cells grow slowly in defined minimal medium and undergo premature growth arrest in response to nitrogen starvation. Interestingly, Δptc4 cells are unable to fuse vacuoles in response to hypotonic stress or nutrient starvation. Conversely, Ptc4 overexpression appears to induce vacuole fusion. These findings reveal a hitherto unrecognized function of type 2C protein phosphatases: regulation of vacuole fusion. Ptc4 localizes in vacuole membranes, which suggests that Ptc4 regulates vacuole fusion by dephosphorylation of one or more proteins in the vacuole membrane. Vacuole function is required for the process of autophagy that is induced by nutrient starvation; thus, the vacuole defect of Δptc4 cells might explain why these cells undergo premature growth arrest in response to nitrogen starvation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recycling of vesicles of the regulated secretory pathway presumably involves passage through an early endosomal compartment as an intermediate step. To learn more about the involvement of endosomes in the recycling of synaptic and secretory vesicles we studied in vitro fusion of early endosomes derived from pheochromocytoma (PC12) cells. Fusion was not affected by cleavage of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins synaptobrevin and syntaxin 1 that operate at the exocytotic limb of the pathway. Furthermore, fusion was inhibited by the fast Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid but not by the slow Ca2+ chelator EGTA. Endosome fusion was restored by the addition of Ca2+ with an optimum at a free Ca2+ concentration of 0.3 × 10−6 M. Other divalent cations did not substitute for Ca2+. A membrane-permeant EGTA derivative caused inhibition of fusion, which was reversed by addition of Ca2+. We conclude that the fusion of early endosomes participating in the recycling of synaptic and neurosecretory vesicles is mediated by a set of SNAREs distinct from those involved in exocytosis and requires the local release of Ca2+ from the endosomal interior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Wnt signaling, β-catenin and plakoglobin transduce signals to the nucleus through interactions with TCF-type transcription factors. However, when plakoglobin is artificially engineered to restrict it to the cytoplasm by fusion with the transmembrane domain of connexin (cnxPg), it efficiently induces a Wnt-like axis duplication phenotype in Xenopus. In Xenopus embryos, maternal XTCF3 normally represses ventral expression of the dorsalizing gene Siamois. Two models have been proposed to explain the Wnt-like activity of cnxPg: 1) that cnxPg inhibits the machinery involved in the turnover of cytosolic β-catenin, which then accumulates and inhibits maternal XTCF3, and 2) that cnxPg directly acts to inhibit XTCF3 activity. To distinguish between these models, we created a series of N-terminal deletion mutations of cnxPg and examined their ability to induce an ectopic axis in Xenopus, activate a TCF-responsive reporter (OT), stabilize β-catenin, and colocalize with components of the Wnt signaling pathway. cnxPg does not colocalize with the Wnt pathway component Dishevelled, but it does lead to the redistribution of APC and Axin, two proteins involved in the regulation of β-catenin turnover. Expression of cnxPg increases levels of cytosolic β-catenin; however, this effect does not completely explain its signaling activity. Although cnxPg and Wnt-1 stabilize β-catenin to similar extents, cnxPg activates OT to 10- to 20-fold higher levels than Wnt-1. Moreover, although LEF1 and TCF4 synergize with β-catenin and plakoglobin to activate OT, both suppress the signaling activity of cnxPg. In contrast, XTCF3 suppresses the signaling activity of both β-catenin and cnxPg. Both exogenous XLEF1 and XTCF3 are sequestered in the cytoplasm of Xenopus cells by cnxPg. Based on these data, we conclude that, in addition to its effects on β-catenin, cnxPg interacts with other components of the Wnt pathway, perhaps TCFs, and that these interactions contribute to its signaling activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transmembrane subunit of the Glc transporter (IICBGlc), which mediates uptake and concomitant phosphorylation of glucose, spans the membrane eight times. Variants of IICBGlc with the native N and C termini joined and new N and C termini in the periplasmic and cytoplasmic surface loops were expressed in Escherichia coli. In vivo transport/in vitro phosphotransferase activities of the circularly permuted variants with the termini in the periplasmic loops 1 to 4 were 35/58, 32/37, 0/3, and 0/0% of wild type, respectively. The activities of the variants with the termini in the cytoplasmic loops 1 to 3 were 0/25, 0/4 and 24/70, respectively. Fusion of alkaline phosphatase to the periplasmic C termini stabilized membrane integration and increased uptake and/or phosphorylation activities. These results suggest that internal signal anchor and stop transfer sequences can function as N-terminal signal sequences in a circularly permuted α-helical bundle protein and that the orientation of transmembrane segments is determined by the amino acid sequence and not by the sequential appearance during translation. Of the four IICBGlc variants with new termini in periplasmic loops, only the one with the discontinuity in loop 4 is inactive. The sequences of loop 4 and of the adjacent TM7 and TM8 are conserved in all phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system transporters of the glucose family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for cell–cell and cell–liposome fusion at the single-cell level is described. Individual cells or liposomes were first selected and manipulated either by optical trapping or by adhesion to a micromanipulator-controlled ultramicroelectrode. Spatially selective fusion of the cell–cell or cell–liposome pair was achieved by the application of a highly focused electric field through a pair of 5-μm o.d. carbon-fiber ultramicroelectrodes. The ability to fuse together single cells opens new possibilities in the manipulation of the genetic and cellular makeup of individual cells in a controlled manner. In the study of cellular networks, for example, the alteration of the biochemical identity of a selected cell can have a profound effect on the behavior of the entire network. Fusion of a single liposome with a target cell allows the introduction of the liposomal content into the cell interior as well as the addition of lipids and membrane proteins onto the cell surface. This cell–liposome fusion represents an approach to the manipulation of the cytoplasmic contents and surface properties of single cells. As an example, we have introduced a membrane protein (γ-glutamyltransferase) reconstituted in liposomes into the cell plasma membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linear peptides derived from the membrane proximal region of the gp41 ectodomain are effective inhibitors of HIV type 1 (HIV-1)-mediated fusion events. These inhibitory peptides lack structure in solution, rendering mechanistic interpretation of their activity difficult. Using structurally constrained analogs of these molecules, we demonstrate that the peptides inhibit infectivity by adopting a helical conformation. Moreover, we show that a specific face of the helix must be exposed to block viral infectivity. Recent crystal structures show that the region of gp41 corresponding to the inhibitory peptides is helical and uses the analogous face to pack against a groove formed by an N-terminal coiled-coil trimer. Our results provide a direct link between the inhibition of HIV-1 infectivity by these peptides and the x-ray structures, and suggest that the conformation of gp41 observed by crystallography represents the fusogenic state. Other agents that block HIV-1 infectivity by binding to this groove may hold promise for the treatment of AIDS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chloroplast to chromoplast development involves new synthesis and plastid localization of nuclear-encoded proteins, as well as changes in the organization of internal plastid membrane compartments. We have demonstrated that isolated red bell pepper (Capsicum annuum) chromoplasts contain the 75-kD component of the chloroplast outer envelope translocon (Toc75) and are capable of importing chloroplast precursors in an ATP-dependent fashion, indicating a functional general import apparatus. The isolated chromoplasts were able to further localize the 33- and 17-kD subunits of the photosystem II O2-evolution complex (OE33 and OE17, respectively), lumen-targeted precursors that utilize the thylakoidal Sec and ΔpH pathways, respectively, to the lumen of an internal membrane compartment. Chromoplasts contained the thylakoid Sec component protein, cpSecA, at levels comparable to chloroplasts. Routing of OE17 to the lumen was abolished by ionophores, suggesting that routing is dependent on a transmembrane ΔpH. The chloroplast signal recognition particle pathway precursor major photosystem II light-harvesting chlorophyll a/b protein failed to associate with chromoplast membranes and instead accumulated in the stroma following import. The Pftf (plastid fusion/translocation factor), a chromoplast protein, integrated into the internal membranes of chromoplasts during in vitro assays, and immunoblot analysis indicated that endogenous plastid fusion/translocation factor was also an integral membrane protein of chromoplasts. These data demonstrate that the internal membranes of chromoplasts are functional with respect to protein translocation on the thylakoid Sec and ΔpH pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The actin cytoskeleton plays a significant role in changes of cell shape and motility, and interactions between the actin filaments and the cell membrane are crucial for a variety of cellular processes. Several adaptor proteins, including talin, maintain the cytoskeleton-membrane linkage by binding to integral membrane proteins and to the cytoskeleton. Layilin, a recently characterized transmembrane protein with homology to C-type lectins, is a membrane-binding site for talin in peripheral ruffles of spreading cells. To facilitate studies of layilin's function, we have generated a layilin-Fc fusion protein comprising the extracellular part of layilin joined to human immunoglobulin G heavy chain and used this chimera to identify layilin ligands. Here, we demonstrate that layilin-Fc fusion protein binds to hyaluronan immobilized to Sepharose. Microtiter plate-binding assays, coprecipitation experiments, and staining of sections predigested with different glycosaminoglycan-degrading enzymes and cell adhesion assays all revealed that layilin binds specifically to hyaluronan but not to other tested glycosaminoglycans. Layilin's ability to bind hyaluronan, a ubiquitous extracellular matrix component, reveals an interesting parallel between layilin and CD44, because both can bind to cytoskeleton-membrane linker proteins through their cytoplasmic domains and to hyaluronan through their extracellular domains. This parallelism suggests a role for layilin in cell adhesion and motility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serine proteases of the chymotrypsin fold are of great interest because they provide detailed understanding of their enzymatic properties and their proposed role in a number of physiological and pathological processes. We have been developing the macromolecular inhibitor ecotin to be a “fold-specific” inhibitor that is selective for members of the chymotrypsin-fold class of proteases. Inhibition of protease activity through the use of wild-type and engineered ecotins results in inhibition of rat prostate differentiation and retardation of the growth of human PC-3 prostatic cancer tumors. In an effort to identify the proteases that may be involved in these processes, reverse transcription–PCR with PC-3 poly(A)+ mRNA was performed by using degenerate oligonucleotide primers. These primers were designed by using conserved protein sequences unique to chymotrypsin-fold serine proteases. Five proteases were identified: urokinase-type plasminogen activator, factor XII, protein C, trypsinogen IV, and a protease that we refer to as membrane-type serine protease 1 (MT-SP1). The cloning and characterization of the MT-SP1 cDNA shows that it encodes a mosaic protein that contains a transmembrane signal anchor, two CUB domains, four LDLR repeats, and a serine protease domain. Northern blotting shows broad expression of MT-SP1 in a variety of epithelial tissues with high levels of expression in the human gastrointestinal tract and the prostate. A His-tagged fusion of the MT-SP1 protease domain was expressed in Escherichia coli, purified, and autoactivated. Ecotin and variant ecotins are subnanomolar inhibitors of the MT-SP1 activated protease domain, suggesting a possible role for MT-SP1 in prostate differentiation and the growth of prostatic carcinomas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To quantitatively investigate the trafficking of the transmembrane lectin VIP36 and its relation to cargo-containing transport carriers (TCs), we analyzed a C-terminal fluorescent-protein (FP) fusion, VIP36-SP-FP. When expressed at moderate levels, VIP36-SP-FP localized to the endoplasmic reticulum, Golgi apparatus, and intermediate transport structures, and colocalized with epitope-tagged VIP36. Temperature shift and pharmacological experiments indicated VIP36-SP-FP recycled in the early secretory pathway, exhibiting trafficking representative of a class of transmembrane cargo receptors, including the closely related lectin ERGIC53. VIP36-SP-FP trafficking structures comprised tubules and globular elements, which translocated in a saltatory manner. Simultaneous visualization of anterograde secretory cargo and VIP36-SP-FP indicated that the globular structures were pre-Golgi carriers, and that VIP36-SP-FP segregated from cargo within the Golgi and was not included in post-Golgi TCs. Organelle-specific bleach experiments directly measured the exchange of VIP36-SP-FP between the Golgi and endoplasmic reticulum (ER). Fitting a two-compartment model to the recovery data predicted first order rate constants of 1.22 ± 0.44%/min for ER → Golgi, and 7.68 ± 1.94%/min for Golgi → ER transport, revealing a half-time of 113 ± 70 min for leaving the ER and 1.67 ± 0.45 min for leaving the Golgi, and accounting for the measured steady-state distribution of VIP36-SP-FP (13% Golgi/87% ER). Perturbing transport with AlF4− treatment altered VIP36-SP-GFP distribution and changed the rate constants. The parameters of the model suggest that relatively small differences in the first order rate constants, perhaps manifested in subtle differences in the tendency to enter distinct TCs, result in large differences in the steady-state localization of secretory components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlamydial attachment to columnar conjunctival or urogenital epithelial cells is an initial and critical step in the pathogenesis of chlamydial mucosal infections. The chlamydial major outer membrane protein (MOMP) has been implicated as a putative chlamydial cytoadhesin; however, direct evidence supporting this hypothesis has not been reported. The function of MOMP as a cytoadhesin was directly investigated by expressing the protein as a fusion with the Escherichia coli maltose binding protein (MBP-MOMP) and studying its interaction with human epithelial cells. The recombinant MBP-MOMP bound specifically to HeLa cells at 4 degrees C but was not internalized after shifting the temperature to 37 degrees C. The MBP-MOMP competitively inhibited the infectivity of viable chlamydiae for epithelial cells, indicating that the MOMP and intact chlamydiae bind the same host receptor. Heparan sulfate markedly reduced binding of the MBP-MOMP to cells, whereas chondroitin sulfate had no effect on binding. Enzymatic treatment of cells with heparitinase but not chondroitinase inhibited the binding of MBP-MOMP. These same treatments were also shown to reduce the infectivity of chlamydiae for epithelial cells. Mutant cell lines defective in heparan sulfate synthesis but not chondroitin sulfate synthesis showed a marked reduction in the binding of MBP-MOMP and were also less susceptible to infection by chlamydiae. Collectively, these findings provide strong evidence that the MOMP functions as a chlamydial cytoadhesin and that heparan sulfate proteoglycans are the host-cell receptors to which the MOMP binds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two genetic events contribute to the development of endemic Burkitt lymphoma (BL) infection of B lymphocytes with Epstein-Barr virus (EBV) and the activation of the protooncogene c-myc through chromosomal translocation. The viral genes EBV nuclear antigen 2 (EBNA2) and latent membrane protein 1 (LMP1) are essential for transformation of primary human B cells by EBV in vitro; however, these genes are not expressed in BL cells in vivo. To address the question whether c-myc activation might abrogate the requirement of the EBNA2 and LMP1 function, we have introduced an activated c-myc gene into an EBV-transformed cell line in which EBNA2 was rendered estrogen-dependent through fusion with the hormone binding domain of the estrogen receptor. The c-myc gene was placed under the control of regulatory elements of the immunoglobulin kappa locus composed a matrix attachment region, the intron enhancer, and the 3' enhancer. We show here that transfection of a c-myc expression plasmid followed by selection for high MYC expression is capable of inducing continuous proliferation of these cells in the absence of functional EBNA2 and LMP1. c-myc-induced hormone-independent proliferation was associated with a dramatic change in the growth behavior as well as cell surface marker expression of these cells. The typical lymphoblastoid morphology and phenotype of EBV-transformed cells completely changed into that of BL cells in vivo. We conclude that the phenotype of BL cells reflects the expression pattern of viral and cellular genes rather than its germinal center origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Newly synthesized membrane proteins travel from the Golgi complex to the cell surface in transport vesicles. We have exploited the ion channel properties of the nicotinic acetylcholine receptor (AChR) to observe in real time the constitutive delivery of newly synthesized AChR proteins to the plasma membrane in cultured muscle cells. Whole-cell voltage clamp was employed to monitor the current fluctuations induced by carbamylcholine upon the insertion into the plasma membrane of newly synthesized AChRs, following release from a 20 degrees C temperature block. We find that the transit of vesicles to the cell surface occurs within a few minutes after release of the block. The time course of electrical signals is consistent with many of the fusion events being instantaneous, although some appear to reveal the flickering of a fusion pore. AChR-containing vesicles can fuse individually or as conglomerates. Intracellular application of guanosine 5'-[gamma-thio]triphosphate inhibits the constitutive traffic of AChRs in most cells. Individual exocytotic vesicles carry between 10 and 300 AChR molecules, suggesting that AChRs may be packed extremely densely.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have expressed a fusion protein formed between the avian infectious bronchitis virus M protein and the bacterial enzyme beta-glucuronidase in transgenic tobacco cells. Electron microscope images of such cells demonstrate that overexpression of this fusion protein gives rise to a type of endoplasmic reticulum membrane domain in which adjacent membranes become zippered together apparently as a consequence of the oligomerizing action of beta-glucuronidase. These zippered (Z-) membranes lack markers of the endoplasmic reticulum (NADH cytochrome c reductase and ribosomes) and accumulate in the cells in the form of multilayered scroll-like structures (up to 2 micrometers in diameter; 20-50 per cell) without affecting plant growth. The discovery of Z-membranes has broad implications for biology and biotechnology in that they provide a means for accumulating large quantities of recombinant membrane proteins within discrete domains of native membranes.