990 resultados para Melnikov-holmes-marsden (mhm) Integrals
Resumo:
Signatur des Originals: S 36/F08854
Resumo:
Signatur des Originals: S 36/F12396
Resumo:
With a 6-channel integrating nephelometer spectral scattering properties of the atmospheric aerosol have been measured during the third part of the Atlantic Expedition 1969. A meridional cross section of light scattering integrals in the wavelength range 0.475 µm to 0.924 µm was recorded reaching from 10° S to 60° N along 30° W. With a new algorithm the time series of hourly scattering spectra was inverted yielding a first meridional cross section of the median radius of the number size distribution in situ. Three air mass regimes could be distinguished in the course of the experiment, the first one being the extremely clean air of the SE-trade south of the ITC. An abrupt increase in light scattering marked the hemispheric change when the ship entered the NE-trade which was heavily loaded with Sahara dust. North of the trade region the ship sailed through maritime North Atlantic air masses with highly variable light scattering and a slow decrease in median radius with latitude.
Resumo:
It is well known that the evaluation of the influence matrices in the boundary-element method requires the computation of singular integrals. Quadrature formulae exist which are especially tailored to the specific nature of the singularity, i.e. log(*- x0)9 Ijx- JC0), etc. Clearly the nodes and weights of these formulae vary with the location Xo of the singular point. A drawback of this approach is that a given problem usually includes different types of singularities, and therefore a general-purpose code would have to include many alternative formulae to cater for all possible cases. Recently, several authors1"3 have suggested a type independent alternative technique based on the combination of standard Gaussian rules with non-linear co-ordinate transformations. The transformation approach is particularly appealing in connection with the p.adaptive version, where the location of the collocation points varies at each step of the refinement process. The purpose of this paper is to analyse the technique in eference 3. We show that this technique is asymptotically correct as the number of Gauss points increases. However, the method possesses a 'hidden' source of error that is analysed and can easily be removed.
Resumo:
The numerical strategies employed in the evaluation of singular integrals existing in the Cauchy principal value (CPV) sense are, undoubtedly, one of the key aspects which remarkably affect the performance and accuracy of the boundary element method (BEM). Thus, a new procedure, based upon a bi-cubic co-ordinate transformation and oriented towards the numerical evaluation of both the CPV integrals and some others which contain different types of singularity is developed. Both the ideas and some details involved in the proposed formulae are presented, obtaining rather simple and-attractive expressions for the numerical quadrature which are also easily embodied into existing BEM codes. Some illustrative examples which assess the stability and accuracy of the new formulae are included.
Resumo:
We discuss several methods, based on coordinate transformations, for the evaluation of singular and quasisingular integrals in the direct Boundary Element Method. An intrinsec error of some of these methods is detected. Two new transformations are suggested which improve on those currently available.
Resumo:
The computation of dipole matrix elements plays an important role in the study of absorption or emission of radiation by atoms in several fields such as astrophysics or inertial confinement fusion. In this work we obtain closed formulas for the dipole matrix elements of multielectron ions suitable for using in the framework of a Relativistic Screened Hydrogenic Model.
Resumo:
A formulation of the perturbed two-body problem that relies on a new set of orbital elements is presented. The proposed method represents a generalization of the special perturbation method published by Peláez et al. (Celest Mech Dyn Astron 97(2):131?150,2007) for the case of a perturbing force that is partially or totally derivable from a potential. We accomplish this result by employing a generalized Sundman time transformation in the framework of the projective decomposition, which is a known approach for transforming the two-body problem into a set of linear and regular differential equations of motion. Numerical tests, carried out with examples extensively used in the literature, show the remarkable improvement of the performance of the new method for different kinds of perturbations and eccentricities. In particular, one notable result is that the quadratic dependence of the position error on the time-like argument exhibited by Peláez?s method for near-circular motion under the J2 perturbation is transformed into linear.Moreover, themethod reveals to be competitive with two very popular elementmethods derived from theKustaanheimo-Stiefel and Sperling-Burdet regularizations.
Resumo:
Quantum groups have been studied intensively for the last two decades from various points of view. The underlying mathematical structure is that of an algebra with a coproduct. Compact quantum groups admit Haar measures. However, if we want to have a Haar measure also in the noncompact case, we are forced to work with algebras without identity, and the notion of a coproduct has to be adapted. These considerations lead to the theory of multiplier Hopf algebras, which provides the mathematical tool for studying noncompact quantum groups with Haar measures. I will concentrate on the *-algebra case and assume positivity of the invariant integral. Doing so, I create an algebraic framework that serves as a model for the operator algebra approach to quantum groups. Indeed, the theory of locally compact quantum groups can be seen as the topological version of the theory of quantum groups as they are developed here in a purely algebraic context.
Resumo:
This contract includes stipulations for finishing the two kitchens, windows, and floors in University Hall by the first of August 1815.