990 resultados para Medicinal chemistry
Resumo:
NAD(+) biosynthesis through nicotinamide phosphoribosyltransferase (NAMPT) holds potential as a target for the treatment of inflammatory disorders due to NAD(+)'s role in immune cell signaling and metabolism. In addition to its activity as an enzyme, NAMPT is also secreted in the extracellular space where it acts as a pro-inflammatory and proangiogenic cytokine. NAMPT inhibition with FK866 has anti-inflammatory activity in different models of immune disorders and it prevents ischemia-reperfusion-induced heart damage by dampening the production of neutrophil chemoattractants. NAMPT blockade with a neutralizing antibody has beneficial effects in an acute lung injury model. Last, but not least, the anticancer activity of NAMPT inhibitors may also reflect, at least in part, their ability to modify the cancer microenvironment through their anti-inflammatory properties. Overall, NAMPT inhibition holds potential for the treatment of inflammation-related disorders and the development of effective and safe NAMPT inhibitors remains an area of strong interest in pharmaceutical research.
Resumo:
Human inhibitor NF-κB kinase 2 (hIKK-2) is the primary component responsible for activating NF-κB in response to various inflammatory stimuli. Thus, synthetic ATP-competitive inhibitors for hIKK-2 have been developed as anti-inflammatory compounds. We recently reported a virtual screening protocol (doi:10.1371/journal.pone.0016903) that is able to identify hIKK-2 inhibitors that are not structurally related to any known molecule that inhibits hIKK-2 and that have never been reported to have anti-inflammatory activity. In this study, a stricter version of this protocol was applied to an in-house database of 29,779 natural products annotated with their natural source. The search identified 274 molecules (isolated from 453 different natural extracts) predicted to inhibit hIKK-2. An exhaustive bibliographic search revealed that anti-inflammatory activity has been previously described for: (a) 36 out of these 453 extracts; and (b) 17 out of 30 virtual screening hits present in these 36 extracts. Only one of the remaining 13 hit molecules in these extracts shows chemical similarity with known synthetic hIKK-2 inhibitors. Therefore, it is plausible that a significant portion of the remaining 12 hit molecules are lead-hopping candidates for the development of new hIKK-2 inhibitors.
Resumo:
Our docking program, Fitted, implemented in our computational platform, Forecaster, has been modified to carry out automated virtual screening of covalent inhibitors. With this modified version of the program, virtual screening and further docking-based optimization of a selected hit led to the identification of potential covalent reversible inhibitors of prolyl oligopeptidase activity. After visual inspection, a virtual hit molecule together with four analogues were selected for synthesis and made in one-five chemical steps. Biological evaluations on recombinant POP and FAPα enzymes, cell extracts, and living cells demonstrated high potency and selectivity for POP over FAPα and DPPIV. Three compounds even exhibited high nanomolar inhibitory activities in intact living human cells and acceptable metabolic stability. This small set of molecules also demonstrated that covalent binding and/or geometrical constraints to the ligand/protein complex may lead to an increase in bioactivity.
Resumo:
In the last few years, a need to account for molecular flexibility in drug-design methodologies has emerged, even if the dynamic behavior of molecular properties is seldom made explicit. For a flexible molecule, it is indeed possible to compute different values for a given conformation-dependent property and the ensemble of such values defines a property space that can be used to describe its molecular variability; a most representative case is the lipophilicity space. In this review, a number of applications of lipophilicity space and other property spaces are presented, showing that this concept can be fruitfully exploited: to investigate the constraints exerted by media of different levels of structural organization, to examine processes of molecular recognition and binding at an atomic level, to derive informative descriptors to be included in quantitative structure--activity relationships and to analyze protein simulations extracting the relevant information. Much molecular information is neglected in the descriptors used by medicinal chemists, while the concept of property space can fill this gap by accounting for the often-disregarded dynamic behavior of both small ligands and biomacromolecules. Property space also introduces some innovative concepts such as molecular sensitivity and plasticity, which appear best suited to explore the ability of a molecule to adapt itself to the environment variously modulating its property and conformational profiles. Globally, such concepts can enhance our understanding of biological phenomena providing fruitful descriptors in drug-design and pharmaceutical sciences.
Resumo:
Indoleamine 2,3-dioxygenase 1 (IDO1) is a key regulator of immune responses and therefore an important therapeutic target for the treatment of diseases that involve pathological immune escape, such as cancer. Here, we describe a robust and sensitive high-throughput screen (HTS) for IDO1 inhibitors using the Prestwick Chemical Library of 1200 FDA-approved drugs and the Maybridge HitFinder Collection of 14,000 small molecules. Of the 60 hits selected for follow-up studies, 14 displayed IC50 values below 20 μM under the secondary assay conditions, and 4 showed an activity in cellular tests. In view of the high attrition rate we used both experimental and computational techniques to identify and to characterize compounds inhibiting IDO1 through unspecific inhibition mechanisms such as chemical reactivity, redox cycling, or aggregation. One specific IDO1 inhibitor scaffold, the imidazole antifungal agents, was chosen for rational structure-based lead optimization, which led to more soluble and smaller compounds with micromolar activity.
Resumo:
Résumé Les esters sont des agents thérapeutiques largement utilisés comme médicaments et prodrogues. Leurs dégradation est chimique et enzymatique. Le Chapitre IV de cette thèse a comme objet l'hydrolyse chimique de plusieurs dérivés esters du 2,3-dimethoxyphenol. Des composés modèles ont été synthétisés dans le but de déterminer leur mécanismes de dégradation. Les profils d'ionisation et d'hydrolyse de ces composés ont permis d'identifier la présence d'une catalyse intramoléculaire basique par un atome d'azote non-protoné. Les effets électroniques exercés par les groupes phenylethenyle et phenylcyclopropyle influencent également la vitesse d'hydrolyse des esters. La résolution des problèmes liés à l'adsorption et la perméation est devenue à nos jours l'étape limitante dans la conception de nouveaux médicaments car de trop nombreux candidats prometteurs ont échoué à cause d'une mauvaise biodisponibilité. La lipophilie décrit le partage d'un médicament entre une membrane lipidique et son environnement physiologique aqueux, et de ce fait elle influence sa pharmacocinétique. Des études récents ont mis en évidence l'importance de la détermination de la lipophilie des espèces ionisées vu leur considérable impact biologique. Le Chapitre V de cette thèse est centré sur une classe particulière de composés ionisables, les zwitterions. Plusieurs methoxybenzylpiperazines de nature zwitterionique ont été étudiées. Leurs profils d'ionisation ont montré que dans un large intervalle de pH, l'espèce prédominante est le zwitterion. Les profils de lipophilie ont montré que leur lipophilie est plus élevée que celles des zwitterions courants. Une interaction électrostatique entre l'oxygène du carboxylate et l'azote protoné est responsable de ce profil et rend la plupart des zwitterions non-donneurs de liaison hydrogène. Ces deux aspects peuvent favoriser le passage de la barrière hémato-éncephalique. Les données biologiques ont par la suite confirmé cette hypothèse pour un certain nombre de composés. Résumé large public Les esters sont des composés souvent rencontrés en chimie thérapeutique. Ils sont dégradés en milieu aqueux par une réaction d'hydrolyse, avec ou sans la participation d'enzymes. Dans ce travail de thèse, une série d'esters ont été étudiés dans le but d'établir une relation entre leur structure et les mécanismes responsables de leur dégradation chimique. Il a été prouvé que la dégradation est accélérée par un atome d'azote non-protoné. D'autres mécanismes peuvent intervenir en fonction du pH du milieu. La présence d'une liaison simple ou double ou d'un groupe phenylcyclopropyle peut également influencer la vitesse de dégradation. Il est essentiel, dans la conception de nouveaux médicaments, d'optimiser les étapes qui influencent leur distribution dans le corps. Ce dernier peut être visualisé comme une série infinie de compartiments aqueux séparés par des membranes lipidiques. La lipophilie est une propriété moléculaire importante qui décrit le passage des barrières rencontrées par les médicaments. Des études récentes ont mis en évidence l'importance de déterminer la lipophilie des espèces ionisées vu leur considérable impact biologique. Dans ce travail de thèse a été étudiée une série particulière de composés ionisables , les zwitterions. Une relation a été établie entre leur structure et leur proprietés physico-chimiques. Une lipophilie plus élevée par rapport à celle des zwitterions courants a été trouvée. Une interaction entre les groupes chargés des zwitterions étudiés est responsable de ce comportement inattendu et rend la plupart d'entre eux non-donneurs de liaison hydrogène. Ces deux facteurs peuvent favoriser la pénétration cérébrale. Les données biologiques ont confirmé cette hypothèse pour un certain nombre de composés. Summary Esters are often encountered in medicinal chemistry. Their hydrolysis may be chemical as well as enzymatic. Chapter IV of this manuscript provides a mechanistic insight into the chemical hydrolysis of a particular series of basic esters derived from 2,3-dimethoxyphenol. Their ionization and pH-rate profiles allowed to identify the presence of an intramolecular base catalysis by a non-protonated nitrogen atom. Electronic effects exerted by the phenylethenyl and phenylcyclopropyl groups that are present in the structure of the esters also influenced their rate of hydrolysis. Numerous works in the literature witness of the importance of lipophilicity in determining the fate of a drug. Most published partition coefficients are those of neutral species. In contrast, no exhaustive treatment of the lipophilicity of charged molecules is available at present, and a lack of information characterizes in particular zwitterions. Chapter V of this manuscript provides an insight into the physicochemical parameters of a series of zwitterionic methoxybenzylpiperazines. Their ionization profiles showed that they exist predominantly in the zwitterionic form in a broad pH-range. An electrostatic interaction between the oxygen of the carboxylate and the protonated nitrogen atom is increases the lipophilicity of the investigated zwitterions, and prevents the majority of them to express their hydrogen-bonding capacity. These two aspects may favor the crossing of the blood-brain barrier. The available ratios PSt/PSf measured in vitro have confirmed this point for a number of compounds.
Resumo:
The effects resulting from the introduction of an oxime group in place of the distal aromatic ring of the diphenyl moiety of LT175, previously reported as a PPARα/γ dual agonist, have been investigated. This modification allowed the identification of new bioisosteric ligands with fairly good activity on PPARα and fine-tuned moderate activity on PPARγ. For the most interesting compound (S)-3, docking studies in PPARα and PPARγ provided a molecular explanation for its different behavior as full and partial agonist of the two receptor isotypes, respectively. A further investigation of this compound was carried out performing gene expression studies on HepaRG cells. The results obtained allowed to hypothesize a possible mechanism through which this ligand could be useful in the treatment of metabolic disorders. The higher induction of the expression of some genes, compared to selective agonists, seems to confirm the importance of a dual PPARα/γ activity which probably involves a synergistic effect on both receptor subtypes.
Resumo:
Positron emission computed tomography (PET) is a functional, noninvasive method for imaging regional metabolic processes that is nowadays most often combined to morphological imaging with computed tomography (CT). Its use is based on the well-founded assumption that metabolic changes occur earlier in tumors than morphologic changes, adding another dimension to imaging. This article will review the established and investigational indications and radiopharmaceuticals for PET/CT imaging for prostate cancer, bladder cancer and testicular cancer, before presenting upcoming applications in radiation therapy.
Resumo:
The evolution of ischemic brain damage is strongly affected by an inflammatory reaction that involves soluble mediators, such as cytokines and chemokines, and specialized cells activated locally or recruited from the periphery. The immune system affects all phases of the ischemic cascade, from the acute intravascular reaction due to blood flow disruption, to the development of brain tissue damage, repair and regeneration. Increased endothelial expression of adhesion molecules and blood-brain barrier breakdown promotes extravasation and brain recruitment of blood-borne cells, including macrophages, neutrophils, dendritic cells and T lymphocytes, as demonstrated both in animal models and in human stroke. Nevertheless, most anti-inflammatory approaches showing promising results in experimental stroke models failed in the clinical setting. The lack of translation may reside in the redundancy of most inflammatory mediators, exerting both detrimental and beneficial functions. Thus, this review is aimed at providing a better understanding of the dualistic role played by each component of the inflammatory/immune response in relation to the spatio-temporal evolution of ischemic stroke injury.
Resumo:
Many biologically active peptides are protected from general proteolytic degradation by evolutionary conserved prolines (Pro), due to conformational constraints imposed by the Pro residue. Thus the biological importance of prolyl-specific peptidases points to a high potential for drug discovery for this family of enzymes. Panels of inhibitors have been synthesized and their effects, determined in biological models, suggest the inhibition of families of enzymes with similar activities. Prolyl-specific aminodipeptidases include dipeptidyl-aminodipeptidase IV (DPP IV)/CD26, DPP8, DPP9 and fibroblast activation protease-alpha (FAP-alpha)/seprase, able to release X-Pro dipeptides from the N-terminus of peptides. DPP IV inhibitors are in clinical use for type 2 diabetes. In this review, the expression and the potential functions of prolyl-aminodipeptidases are reviewed in diseases, and the inhibitors developed for these enzymes are discussed, with a specific focus on inhibitors able to discriminate between DPP IV and fibroblast activation protease-alpha (FAPalpha)/seprase as potential leads for the treatment of fibrogenic diseases.
Resumo:
Malaria, a disease of worldwide significance, is responsible for over one million deaths annually. The liver-stage of Plasmodium's life cycle is the first, obligatory, but clinically silent step in malaria infection. The P. falciparum type II fatty acid biosynthesis pathway (PfFAS-II) has been found to be essential for complete liver-stage development and has been regarded as a potential antimalarial target for the development of drugs for malaria prophylaxis and liver-stage eradication. In this paper, new coumarin-based triclosan analogues are reported and their biological profile is explored in terms of inhibitory potency against enzymes of the PfFAS-II pathway. Among the tested compounds, 7 and 8 showed the highest inhibitory potency against Pf enoyl-ACP-reductase (PfFabI), followed by 15 and 3. Finally, we determined the crystal structures of compounds 7 and 11 in complex with PfFabI to identify their mode of binding and to confirm outcomes of docking simulations.
Resumo:
The study reports a set of forty proteinogenic histidine-containing dipeptides as potential carbonyl quenchers. The peptides were chosen to cover as exhaustively as possible the accessible chemical space, and their quenching activities toward 4-hydroxy-2-nonenal (HNE) and pyridoxal were evaluated by HPLC analyses. The peptides were capped at the C-terminus as methyl esters or amides to favor their resistance to proteolysis and diastereoisomeric pairs were considered to reveal the influence of configuration on quenching. On average, the examined dipeptides are less active than the parent compound carnosine (βAla + His) thus emphasizing the unfavorable effect of the shortening of the βAla residue as confirmed by the control dipeptide Gly-His. Nevertheless, some peptides show promising activities toward HNE combined with a remarkable selectivity. The results emphasize the beneficial role of aromatic and positively charged residues, while negatively charged and H-bonding side chains show a detrimental effect on quenching. As a trend, ester derivatives are slightly more active than amides while heterochiral peptides are more active than their homochiral diastereoisomer. Overall, the results reveal that quenching activity strongly depends on conformational effects and vicinal residues (as evidenced by the reported QSAR analysis), offering insightful clues for the design of improved carbonyl quenchers and to rationalize the specific reactivity of histidine residues within proteins.
Resumo:
Prolyl oligopeptidases cleave peptides on the carboxy side of internal proline residues and their inhibition has potential in the treatment of human brain disorders. Using our docking program fitted, we have designed a series of constrained covalent inhibitors, built from a series of bicyclic scaffolds, to study the optimal shape required for these small molecules. These structures bear nitrile functional groups that we predicted to covalently bind to the catalytic serine of the enzyme. Synthesis and biological assays using human brain-derived astrocytic cells and endothelial cells and human fibroblasts revealed that these compounds act as selective inhibitors of prolyl oligopeptidase activity compared to prolyl-dipeptidyl-aminopeptidase activity, are able to penetrate the cells and inhibit intracellular activities in intact living cells. This integrated computational and experimental study shed light on the binding mode of inhibitors in the enzyme active site and will guide the design of future drug-like molecules.
Resumo:
Novel alpha-mannosidase inhibitors of the type (2R,3R,4S)-2-({[(1R)-2-hydroxy-1-arylethyl]amino}methyl)pyrrolidine-3,4-diol have been prepared and assayed for their anticancer activities. Compound 30 with the aryl group=4-trifluoromethylbiphenyl inhibits the proliferation of primary cells and cell lines of different origins, irrespective of Bcl-2 expression levels, inducing a G2/Mcell cycle arrest and by modification of genes involved in cell cycle progression and survival.
Resumo:
Notch is a membrane inserted protein activated by the membrane-inserted γ-secretase proteolytic complex. The Notch pathway is a potential therapeutic target for the treatment of renal diseases but also controls the function of other cells, requiring cell-targeting of Notch antagonists. Toward selective targeting, we have developed the γ-secretase inhibitor-based prodrugs 13a and 15a as substrates for γ-glutamyltranspeptidase (γ-GT) and/or γ-glutamylcyclotransferase (γ-GCT) as well as aminopeptidase A (APA), which are overexpressed in renal diseases, and have evaluated them in experimental in vitro and in vivo models. In nondiseased mice, the cleavage product from Ac-γ-Glu-γ-secretase inhibitor prodrug 13a (γ-GT-targeting and γ-GCT-targeting) but not from Ac-α-Glu-γ-secretase inhibitor prodrug 15a (APA-targeting) accumulated in kidneys when compared to blood and liver. Potential nephroprotective effects of the γ-secretase inhibitor targeted prodrugs were investigated in vivo in a mouse model of acute kidney injury, demonstrating that the expression of Notch1 and cleaved Notch1 could be selectively down-regulated upon treatment with the Ac-γ-Glu-γ-secretase-inhibitor 13a.