834 resultados para Mathematics’ teacher
Resumo:
Дагмар Рааб Математиката е вълнуваща и забавна. Можем ли да убедим учениците, че това може да стане действителност. Задачите са най-важните инструменти за учителите по математика, когато планират уроците си. Планът трябва да съдържа идеи как да се очертае и как да се жалонира пътят, по който учениците ще стигнат до решението на дадена задача. Учителите не трябва да очакват от учениците си просто да кажат кой е отговорът на задачата, а да ги увлекат в процеса на решаване с подходящи въпроси. Ролята на учителя е да помогне на учениците • да бъдат активни и резултатни при решаването на задачи; • самите те да поставят задачи; • да модифицират задачи; • да откриват закономерности; • да изготвят стратегии за решаване на задачи; • да откриват и изследват различни начини за решаване на задачи; • да намират смислена връзка между математическите си знания и проблеми от ежедневието. В доклада са представени избрани и вече експериментирани примери за това как учители и ученици могат да намерят подходящ път към нов тип преживявания в преподаването и изучаването на училищната математика.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015
Resumo:
This study examined the effects of computer assisted instruction (CAI) 1 hour per week for 18 weeks on changes in computational scores and attitudes of developmental mathematics students at schools with predominantly Black enrollment. Comparisons were made between students using CAI with differing software--PLATO, CSR or both together--and students using traditional instruction (TI) only.^ This study was conducted in the Dade County Public School System from February through June 1991, at two senior high schools. The dependent variables, the State Student Assessment Test (SSAT), and the School Subjects Attitude Scales (SSAS), measured students' computational scores and attitudes toward mathematics in 3 categories: interest, usefulness, and difficulty, respectively.^ Univariate analyses of variance were performed on the least squares mean differences from pretest to posttest for testing main effects and interactions. A t-test measured significant main effects and interactions. Results were interpreted at the.01 level of significance.^ Null hypotheses 1, 2, and 3 compared versions of CAI with the control group, for changes in mathematical computation scores measured with the SSAT. It could not be concluded that changes in standardized mathematics test scores of students using CAI with differing software 1 hour per week for 18 class hours combined with TI were significantly higher than changes in test scores for students receiving TI only.^ Null hypotheses 4, 5, and 6 tested the effects of CAI for attitudes toward mathematics for experimental groups against control groups measured with the SSAS. Changes in attitudes toward mathematics of students using CAI with differing software 1 hour per week for 18 class hours combined with TI were not significantly higher than attitude changes for students receiving TI only.^ Teacher effect on students' computational scores was a more influential variable than CAI. No interaction was found between gender and learning method on standardized mathematics test scores (null hypothesis 7). ^
Resumo:
This study examined the effectiveness of intelligent tutoring system instruction, grounded in John Anderson's ACT theory of cognition, on the achievement and attitude of developmental mathematics students in the community college setting. The quasi-experimental research used a pretest-posttest control group design. The dependent variables were problem solving achievement, overall achievement, and attitude towards mathematics. The independent variable was instructional method.^ Four intact classes and two instructors participated in the study for one semester. Two classes (n = 35) served as experimental groups; they received six lessons with real-world problems using intelligent tutoring system instruction. The other two classes (n = 24) served as control groups; they received six lessons with real-world problems using traditional instruction including graphing calculator support. It was hypothesized that students taught problem solving using the intelligent tutoring system would achieve more on the dependent variables than students taught without the intelligent tutoring system.^ Posttest mean scores for one teacher produced a significant difference in overall achievement for the experimental group. The same teacher had higher means, not significantly, for the experimental group in problem solving achievement. The study did not indicate a significant difference in attitude mean scores.^ It was concluded that using an intelligent tutoring system in problem solving instruction may impact student's overall mathematics achievement and problem solving achievement. Other factors must be considered, such as the teacher's classroom experience, the teacher's experience with the intelligent tutoring system, trained technical support, and trained student support; as well as student learning styles, motivation, and overall mathematics ability. ^
Resumo:
Countless books have been written about what is good and what is bad about our educational system. No matter what the book or what the theory, all agree the classroom teacher is critical to the education process. Many influences affect classroom teaching, some of which are beyond her control, but a caring classroom teacher has a central role in the instruction of children The purpose of this case study was to inquire into the beliefs and behaviors of one elementary school teacher in a low socio-economic school and study her classroom perspective. This teacher of five years was a reading specialist and was teaching a full fourth grade curriculum for the first time. Because she suffered from math phobia, she was apprehensive about teaching mathematics. ^ This qualitative study required intense, time-consuming interviews, long and frequent observations, critical journaling, field notes and artifacts provided by the teacher. The resulting descriptive data was coded into categories and reassembled into themes that captured the essence of the teacher's beliefs. ^ The overarching themes found were: first, the teacher's caring attitude towards her students, cultivated by her affectionate family, her mother who is an elementary school teacher, and rich and rewarding elementary school experiences, second, her implementation of the curriculum, influenced by her passion for reading, her math phobia, and standardized tests and third, her attitudes toward her workplace, school administrators and collegiality among teachers. During the school year this teacher “owned” her classroom and was a full participant in its life! Her dedication to teaching was fostered by the satisfaction of knowing she has a profound impact and makes a significant difference in her students' lives. ^ This study suggested areas for further research on the following topics: consideration of teachers with math phobia, the effect of standardized tests on areas of the curriculum and the value of computers in the elementary school classroom. ^
Resumo:
The purpose of this study was to examine the effects of the use of technology on students’ mathematics achievement, particularly the Florida Comprehensive Assessment Test (FCAT) mathematics results. Eleven schools within the Miami-Dade County Public School System participated in a pilot program on the use of Geometers Sketchpad (GSP). Three of these schools were randomly selected for this study. Each school sent a teacher to a summer in-service training program on how to use GSP to teach geometry. In each school, the GSP class and a traditional geometry class taught by the same teacher were the study participants. Students’ mathematics FCAT results were examined to determine if the GSP produced any effects. Students’ scores were compared based on assignment to the control or experimental group as well as gender and SES. SES measurements were based on whether students qualified for free lunch. The findings of the study revealed a significant difference in the FCAT mathematics scores of students who were taught geometry using GSP compared to those who used the traditional method. No significant differences existed between the FCAT mathematics scores of the students based on SES. Similarly, no significant differences existed between the FCAT scores based on gender. In conclusion, the use of technology (particularly GSP) is likely to boost students’ FCAT mathematics test scores. The findings also show that the use of GSP may be able to close known gender and SES related achievement gaps. The results of this study promote policy changes in the way geometry is taught to 10th grade students in Florida’s public schools.
Resumo:
Math literacy is imperative to succeed in society. Experience is key for acquiring math literacy. A preschooler's world is full of mathematical experiences. Children are continually counting, sorting and comparing as they play. As children are engaged in these activities they are using language as a tool to express their mathematical thinking. If teachers are aware of these teachable moments and help children bridge their daily experiences to mathematical concepts, math literacy may be enhanced. This study described the interactions between teachers and preschoolers, determining the extent to which teachers scaffold children's everyday language into expressions of mathematical concepts. Of primary concern were the teachers' responsive interactions to children's expressions of an implicit mathematical utterance made while engaged in block play. The parallel mixed methods research design consisted of two strands. Strand 1 of the study focused on preschoolers' use of everyday language and the teachers' responses after a child made a mathematical utterance. Twelve teachers and 60 students were observed and videotaped while engaged in block play. Each teacher worked with five children for 20 minutes, yielding 240 minutes of observation. Interaction analysis was used to deductively analyze the recorded observations and field notes. Using a priori codes for the five mathematical concepts, it was found children produced 2,831 mathematical utterances. Teachers ignored 60% of these utterances and responded to, but did not mediate 30% of them. Only 10% of the mathematical utterances were mediated to a mathematical concept. Strand 2 focused on the teacher's view of the role of language in early childhood mathematics. The 12 teachers who had been observed as part of the first strand of the study were interviewed. Based on a thematic analysis of these interviews three themes emerged: (a) the importance of a child's environment, (b) the importance of an education in society, and (c) the role of math in early childhood. Finally, based on a meta-inference of both strands, three themes emerged: (a) teacher conception of math, (b) teacher practice, and (c) teacher sensitivity. Implications based on the findings involve policy, curriculum, and professional development.