962 resultados para Massive spin-2


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The accretion of minor satellites is currently proposed as the most likely mechanism to explain the significant size evolution of the massive galaxies during the last ∼10 Gyr. In this paper, we investigate the rest-frame colours and the average stellar ages of satellites found around massive galaxies (M_star ∼ 10^11 M_⊙) since z ∼ 2. We find that the satellites have bluer colours than their central galaxies. When exploring the stellar ages of the galaxies, we find that the satellites have similar ages to the massive galaxies that host them at high redshifts, while at lower redshifts they are, on average, ≳1.5 Gyr younger. If our satellite galaxies create the envelope of nearby massive galaxies, our results would be compatible with the idea that the outskirts of those galaxies are slightly younger, metal-poorer and with lower [α/Fe] abundance ratios than their inner regions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Discoveries during the last two years have revealed the existence of a vast region of star formation close to the base of the Scutum Arm, where at least five clusters of red supergiants have been found. In order to understand the nature of this region, we need to determine accurate distances to the clusters. We present here the first results of an ongoing program to derive fundamental parameters (such as age, distance, etc.) to the massive cluster Stephenson 2 studying for the first time its main sequence stars.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use series expansion methods to calculate the dispersion relation of the one-magnon excitations for the spin-(1)/(2) triangular-lattice nearest-neighbor Heisenberg antiferromagnet above a three-sublattice ordered ground state. Several striking features are observed compared to the classical (large-S) spin-wave spectra. Whereas, at low energies the dispersion is only weakly renormalized by quantum fluctuations, significant anomalies are observed at high energies. In particular, we find rotonlike minima at special wave vectors and strong downward renormalization in large parts of the Brillouin zone, leading to very flat or dispersionless modes. We present detailed comparison of our calculated excitation energies in the Brillouin zone with the spin-wave dispersion to order 1/S calculated recently by Starykh, Chubukov, and Abanov [Phys. Rev. B74, 180403(R) (2006)]. We find many common features but also some quantitative and qualitative differences. We show that at temperatures as low as 0.1J the thermally excited rotons make a significant contribution to the entropy. Consequently, unlike for the square lattice model, a nonlinear sigma model description of the finite-temperature properties is only applicable at temperatures < 0.1J. Finally, we review recent NMR measurements on the organic compound kappa-(BEDT-TTF)(2)Cu-2(CN)(3). We argue that these are inconsistent with long-range order and a description of the low-energy excitations in terms of interacting magnons, and that therefore a Heisenberg model with only nearest-neighbor exchange does not offer an adequate description of this material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Fe Mössbauer spectroscopy of mononuclear [Fe(II)(isoxazole)](ClO) has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S = 0) and high-spin (S = 2) states. Temperaturedependent spin transition curves have been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures between 84 and 270 K during a cooling and heating cycle. This compound exhibits an unusual temperature-dependent spin transition behaviour with T(?) = 223 and T(?) = 213 K occurring in the reverse order in comparison to those observed in SQUID observation and many other spin transition compounds. The compound has three high-spin Fe(II) sites at the highest temperature of study of which two undergo spin transitions. The compound seems to undergo a structural phase transition around the spin transition temperature, which plays a significant role in the spin crossover behaviour as well as the magnetic properties of the compound at temperatures below T. The present study reveals an increase in high-spin fraction upon heating in the temperature range below T, and an explanation is provided.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fe{HB(CHN)} is observed by variable temperature infrared and magnetic studies to have a spin transition between the low spin S = 0 and high spin S = 2 states at 331 K (58 °C) with thermal hysteresis of ~1.5 K. Changes in the triazole ligand IR absorptions demonstrate that distant non-metal-ligand vibrations are altered upon the change in electronic structure associated with the spin-crossover can be used to monitor the the spin-crossover transition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis and crystal structure (at 100K) of the title compound, Cs[Fe(C11H13N3O2S2) 2] CH3OH, is reported. The asymmetric unit consists of an octahedral [FeIII(L)2]- fragment, where L 2- is 3-ethoxysalicylaldehyde 4-methylthiosemicarbazonate(2-) {systematic name: [2-(3-ethoxy-2-oxidobenzylidene)hydrazin-1-ylidene] (methylamino)methanethiolate}, a caesium cation and a methanol solvent molecule. Each L2- ligand binds through the thiolate S, the imine N and the phenolate O atoms as donors, resulting in an FeIIIS2N 2O2 chromophore. The O,N,S-coordinating ligands are orientated in two perpendicular planes, with the O and S atoms in cis positions and the N atoms in trans positions. The FeIII cation is in the low-spin state at 100K. © 2014 International Union of Crystallography.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The reaction of btzmp (1,2-bis(tetrazol-1-yl)-2-methylpropane) with Fe(ClO4)2 generates a 1D polymeric species, [Fe(μ-btzmp)2(btzmp)2](ClO4)2, showing a steep spin transition (T½↑ = 136 K and T ½↓ = 133 K) with a 3 K thermal hysteresis. The crystal structure at 100 and 200 K reveals that, in contrast to other bistetrazole based spin-transition systems such as [Fe(endi)3](BF4)2 and [Fe(btzp)3](ClO4)2, the present compound has only two ligands bridging the metallic centres, while the other two coordination positions are occupied by two mono-coordinated (non-bridging) btzmp ligands. This peculiarity confers an unprecedented crystal packing in the series of 1D bistetrazole based polymers. The change in spin state is accompanied by an order/disorder transition of the ClO4- counterion. A careful examination of the structural changes occurring upon the spin transition indicates that this order/disorder is most likely affected by the modification of the [tetrazole-centroid]-ND-Fe angle (which is typical of bistetrazole spin-transition materials). Apart from X-ray analysis, also magnetic susceptibility, Mössbauer and UV-vis spectroscopies have been used to characterise the HS and the LS states of [Fe(µ-btzmp)2(btzmp)2](ClO4)2. © The Royal Society of Chemistry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

57Fe Mössbauer spectroscopy of the mononuclear [Fe(II)(isoxazole)6](BF4) 2compound has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S = 0) and high-spin (S = 2) states. A temperature-dependent spin transition curve has been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures in the 240-60K range during the cooling and heating cycle. The compound exhibits a temperature-dependent two-step spin transition phenomenon with Tsco (step 1) = 92 and Tsco (step2) = 191K. The compound has three high-spin Fe(II) sites at the highest temperature of study; among them, two have slightly different coordination environments. These two Fe(II) sites are found to undergo a spin transition, while the third Fe(II) site retains the high-spin state over the whole temperature range. Possible reasons for the formation of the two steps in the spin transition curve are discussed. The observations made from the present study are in complete agreement with those envisaged from earlier magnetic and structural studies made on [Fe(II)(isoxazole)6](BF4)2, but highlights the nature of the spin crossover mechanism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structure and spin-crossover magnetic behavior of [FeII16][BF4]2 (1 = isoxazole) and [FeII16][ClO4]2 have been studied. [FeII16][BF4]2 undergoes two reversible spin-crossover transitions at 91 and 192 K, and is the first two-step spin transition to undergo a simultaneous crystallographic phase transition, but does not exhibit thermal hysteresis. The single-crystal structure determinations at 260 [space group P3̄, a = 17.4387(4) Å, c = 7.6847(2) Å] and at 130 K [space group P1̄, a = 17.0901(2) Å, b = 16.7481(2) Å, c = 7.5413(1) Å, α = 90.5309(6)°, β = 91.5231(6)°, γ = 117.8195(8)°] reveal two different iron sites, Fe1 and Fe2, in a 1:2 ratio. The room-temperature magnetic moment of 5.0 μB is consistent with high-spin Fe(II). A plateau in μ(T) having a moment of 3.3 μB centered at 130 K suggests a mixed spin system of some high-spin and some low-spin Fe(II) molecules. On the basis of the Fe−N bond distances at the two temperatures, and the molar fraction of high-spin molecules at the transition plateau, Fe1 and Fe2 can be assigned to the 91 and 192 K transitions, respectively. [FeII16][ClO4]2 [space group P3̄, a = 17.5829(3) Å, c = 7.8043(2) Å, β = 109.820 (3)°, T = 295 K] also possesses Fe1:Fe2 in a 1:2 ratio, and magnetic measurements show a single spin transition at 213 K, indicating that both Fe1 and Fe2 undergo a simultaneous spin transition. [FeII16][ClO4]2 slowly decomposes in solutions containing acetic anhydride to form [FeIII3O(OAc)613][ClO4] [space group I2, a = 10.1547(7) Å, b = 16.5497(11) Å, c = 10.3205(9) Å, β = 109.820 (3)°, T = 200 K]. The isosceles Fe3 unit contains two Fe···Fe distances of 3.2844(1) Å and a third Fe···Fe distance of 3.2857(1) Å. The magnetic data can be fit to a trinuclear model with ℋ = −2J(S1·S2 + S2·S3) − 2J13(S1·S3), where J = −27.1 and J13 = −32.5 cm-1.