961 resultados para Mass Transfer Coefficient


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite its importance for designing evaporators and condensers, a review of the literature shows that heat transfer data during phase change of carbon dioxide is very limited, mainly for microchannel flows. In order to give a contribution on this subject, an experimental study of CO 2 evaporation inside a 0.8 mm-hydraulic diameter microchannel was performed in this work. The average heat transfer coefficient along the microchannel was measured and visualization of the flow patterns was conducted. A total of 67 tests were performed at saturation temperature of 23.3°C for a heat flux of 1800 W/(m2°C). Vapor qualities ranged from 0.005 to 0.88 and mass flux ranged from 58 to 235 kg/(m2s). An average heat transfer coefficient of 9700 W/(m2°C) with a standard deviation of 35% was obtained. Nucleate boiling was found to characterize the flow regime for the test conditions. The dryout of the flow, characterized by the sudden reduction in the heat transfer coefficient, was identified at vapor qualities around 0.85. Flow visualization results showed three flow patterns. For low vapor qualities (up to about 0.25), plug flow was predominant, while slug flow occurred at moderated vapor qualities (from about 0.25 to 0.50). Annular flow was the flow pattern for higher vapor qualities. Copyright © 2006 by ABCM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aerobic internal-loop reactors use active biomass attached in a supporting media (biofilm) with the advantage of retaining a big biomass concentration in a small physical space, removing carbonaceous matter and nitrogen in only one reactor. Liquid circulation occurs due to hydrostatic pressure difference produced by air injection in the riser. In biphasic conditions liquid circulation velocities, gas holdup and oxygen transfer coefficient in four different reactor configurations were studied. For the three-phase conditions, the same parameters in just one of those configurations were evaluated. Also, there were three granular supporting media characterized. On the other hand, the relationship between internal and external tube areas and supporting media concentrations influence the liquid velocity, gas holdup and oxygen mass transfer values and some important supporting media characteristics were observed and compared.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A extração de substâncias de substratos sólidos tanto a baixas como a altas pressões envolve pelo menos duas fases, uma sólida e outra fluida. O conteúdo de soluto em cada fase é expresso em termos do volume da fase e/ou do volume do solvente. Então para modelar a transferência de massa interfacial, é necessário um coeficiente de partição. Em geral a forma mais simples para tratar o problema é modelar as fases separadamente. O mecanismo de transferência de massa predominante pode variar de sistema para sistema. Para alguns substratos a maior resistência pode estar na fase sólida e para outros ela está na fase fluida. Como na interface as concentrações referentes a cada fase são representadas por grandezas diferentes, as fases têm de ser modeladas separadamente. No entanto, dependendo do sistema, pode haver um mecanismo de transferência predominando sobre o outro e, muitos efeitos podem ser desprezados para a simplificação do modelo. A utilização de modelos matemáticos mais simples requer uma combinação das variáveis na definição de parâmetros mais abrangentes que possam representar o fenômeno. Neste trabalho as curvas de extração foram ajustadas a um modelo que descreve a transferência de massa interfacial como uma cinética de primeira ordem, tendo a constante da velocidade de extração único parâmetro de ajuste. Propõe-se que este parâmetro de ajuste depende da solubilidade do soluto no solvente supercrítico e das características do substrato solido. Para isto foram feitos experimentos de extração com babaçu, açaí em pó e polpa de pupunha, usando dióxido de carbono supercrítico nas condições de 20, 25 e 30 MPa a uma temperatura de 50 ºC. Os resultados mostraram que os dados experimentais se ajustam bem a um modelo com uma constante característica de cada material, com valores 4,1983 x 10-5 m/kg∙s para o babaçu, 4,2258 x 10-5 m/kg∙s para a pupunha e 3,9115 x 10-5 m/kg∙s para o açaí em pó.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A steady state multi-segmented heat transfer model of the human upper limbs was developed. The main purpose was to evaluate the impact of blood flow through superficial veins and subcutaneous vascular structures in the palm of the hands over the heat transfer between the limbs and the environment. The distinguishing feature of the model is the inclusion of a detailed circulatory network composed of vessels with diameter larger than 1 mm. The model was validated by comparing its results from exposures to a hot, a neutral, and a cold environment to experimental data presented in the literature. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports an experimental method to estimate the convective heat transfer of cutting fluids in a laminar flow regime applied on a thin steel plate. The heat source provided by the metal cutting was simulated by electrical heating of the plate. Three different cooling conditions were evaluated: a dry cooling system, a flooded cooling system and a minimum quantity of lubrication cooling system, as well as two different cutting fluids for the last two systems. The results showed considerable enhancement of convective heat transfer using the flooded system. For the dry and minimum quantity of lubrication systems, the heat conduction inside the body was much faster than the heat convection away from its surface. In addition, using the Biot number, the possible models were analyzed for conduction heat problems for each experimental condition tested.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experimental flow boiling heat transfer results are presented for horizontal 1.0 and 2.2 mm I. D. (internal diameter) stainless steel tubes for tests with R1234ze(E), a new refrigerant developed as a substitute for R134a with a much lower global warming potential (GWP). The experiments were performed for these two tube diameters in order to investigate a possible transition between macro and microscale flow boiling behavior. The experimental campaign includes mass velocities ranging from 50 to 1500 kg/m(2) s, heat fluxes from 10 to 300 kW/m(2), exit saturation temperatures of 25, 31 and 35 degrees C, vapor qualities from 0.05 to 0.99 and heated lengths of 180 mm and 361 mm. Flow pattern characterization was performed using high speed videos. Heat transfer coefficient, critical heat flux and flow pattern data were obtained. R1234ze(E) demonstrated similar thermal performance to R134a data when running at similar conditions. [DOI: 10.1115/1.4004933]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The xylose conversion to ethanol by Pichia stipitis was studied. In a first step, the necessity of supplementing the fermentation medium with urea. MgSO(4) x 7H(2)O, and/or yeast extract was evaluated through a 2(3) full factorial design. The simultaneous addition of these three nutritional sources to the fermentation medium, in concentrations of 2.3, 1.0, and 3.0 g/l, respectively, showed to be important to improve the ethanol production in detriment of the substrate conversion to cell. In a second stage, fermentation assays performed in a bioreactor under different K(L)a (volumetric oxygen transfer coefficient) conditions made possible understanding the influence of the oxygen transfer on yeast performance, as well as to define the most suitable range of values for an efficient ethanol production. The most promising region to perform this bioconversion process was found to be between 2.3 and 4.9 h(-1), since it promoted the highest ethanol production results with practically exhaustion of the xylose from the medium. These findings contribute for the development of an economical and efficient technology for large scale production of second generation ethanol. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The existence of millisecond pulsars with planet-mass companions in close orbits is challenging from the stellar evolution point of view. We calculate in detail the evolution of binary systems self-consistently, including mass transfer, evaporation, and irradiation of the donor by X-ray feedback, demonstrating the existence of a new evolutionary path leading to short periods and compact donors as required by the observations of PSR J1719-1438. We also point out the alternative of an exotic nature of the companion planet-mass star.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this thesis was to improve the commercial CFD software Ansys Fluent to obtain a tool able to perform accurate simulations of flow boiling in the slug flow regime. The achievement of a reliable numerical framework allows a better understanding of the bubble and flow dynamics induced by the evaporation and makes possible the prediction of the wall heat transfer trends. In order to save computational time, the flow is modeled with an axisymmetrical formulation. Vapor and liquid phases are treated as incompressible and in laminar flow. By means of a single fluid approach, the flow equations are written as for a single phase flow, but discontinuities at the interface and interfacial effects need to be accounted for and discretized properly. Ansys Fluent provides a Volume Of Fluid technique to advect the interface and to map the discontinuous fluid properties throughout the flow domain. The interfacial effects are dominant in the boiling slug flow and the accuracy of their estimation is fundamental for the reliability of the solver. Self-implemented functions, developed ad-hoc, are introduced within the numerical code to compute the surface tension force and the rates of mass and energy exchange at the interface related to the evaporation. Several validation benchmarks assess the better performances of the improved software. Various adiabatic configurations are simulated in order to test the capability of the numerical framework in modeling actual flows and the comparison with experimental results is very positive. The simulation of a single evaporating bubble underlines the dominant effect on the global heat transfer rate of the local transient heat convection in the liquid after the bubble transit. The simulation of multiple evaporating bubbles flowing in sequence shows that their mutual influence can strongly enhance the heat transfer coefficient, up to twice the single phase flow value.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Five different methods were critically examined to characterize the pore structure of the silica monoliths. The mesopore characterization was performed using: a) the classical BJH method of nitrogen sorption data, which showed overestimated values in the mesopore distribution and was improved by using the NLDFT method, b) the ISEC method implementing the PPM and PNM models, which were especially developed for monolithic silicas, that contrary to the particulate supports, demonstrate the two inflection points in the ISEC curve, enabling the calculation of pore connectivity, a measure for the mass transfer kinetics in the mesopore network, c) the mercury porosimetry using a new recommended mercury contact angle values. rnThe results of the characterization of mesopores of monolithic silica columns by the three methods indicated that all methods were useful with respect to the pore size distribution by volume, but only the ISEC method with implemented PPM and PNM models gave the average pore size and distribution based on the number average and the pore connectivity values.rnThe characterization of the flow-through pore was performed by two different methods: a) the mercury porosimetry, which was used not only for average flow-through pore value estimation, but also the assessment of entrapment. It was found that the mass transfer from the flow-through pores to mesopores was not hindered in case of small sized flow-through pores with a narrow distribution, b) the liquid penetration where the average flow-through pore values were obtained via existing equations and improved by the additional methods developed according to Hagen-Poiseuille rules. The result was that not the flow-through pore size influences the column bock pressure, but the surface area to volume ratio of silica skeleton is most decisive. Thus the monolith with lowest ratio values will be the most permeable. rnThe flow-through pore characterization results obtained by mercury porosimetry and liquid permeability were compared with the ones from imaging and image analysis. All named methods enable a reliable characterization of the flow-through pore diameters for the monolithic silica columns, but special care should be taken about the chosen theoretical model.rnThe measured pore characterization parameters were then linked with the mass transfer properties of monolithic silica columns. As indicated by the ISEC results, no restrictions in mass transfer resistance were noticed in mesopores due to their high connectivity. The mercury porosimetry results also gave evidence that no restrictions occur for mass transfer from flow-through pores to mesopores in the small scaled silica monoliths with narrow distribution. rnThe prediction of the optimum regimes of the pore structural parameters for the given target parameters in HPLC separations was performed. It was found that a low mass transfer resistance in the mesopore volume is achieved when the nominal diameter of the number average size distribution of the mesopores is appr. an order of magnitude larger that the molecular radius of the analyte. The effective diffusion coefficient of an analyte molecule in the mesopore volume is strongly dependent on the value of the nominal pore diameter of the number averaged pore size distribution. The mesopore size has to be adapted to the molecular size of the analyte, in particular for peptides and proteins. rnThe study on flow-through pores of silica monoliths demonstrated that the surface to volume of the skeletons ratio and external porosity are decisive for the column efficiency. The latter is independent from the flow-through pore diameter. The flow-through pore characteristics by direct and indirect approaches were assessed and theoretical column efficiency curves were derived. The study showed that next to the surface to volume ratio, the total porosity and its distribution of the flow-through pores and mesopores have a substantial effect on the column plate number, especially as the extent of adsorption increases. The column efficiency is increasing with decreasing flow through pore diameter, decreasing with external porosity, and increasing with total porosity. Though this tendency has a limit due to heterogeneity of the studied monolithic samples. We found that the maximum efficiency of the studied monolithic research columns could be reached at a skeleton diameter of ~ 0.5 µm. Furthermore when the intention is to maximize the column efficiency, more homogeneous monoliths should be prepared.rn

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hydrogels are composed of cross-linked networks of hydrophilic polymers that are biocompatible due to their high water content. Mass transfer through hydrogels has been suggested as an effective method of drug delivery, specifically in degradable polymers to minimize lasting effects within the body. Diffusion of small molecules in poly (ethylene glycol) diacrylate (PEG-DA) and dextran methacrylate (dex-MA) hydrogels was characterized in a microfluidic device and by complementary techniques. Microfluidic devices were prepared by crosslinking a formulation of hydrogel and photo-initiator, with and without visible dye, using photolithography to define a central microchannel. Channel sizes within the devices were approximately 600 ¿m to simulate vessels within the body. The microfluidic technique allows for both image and effluent analyses. To visualize the diffusive behavior within the dextran hydrogel, methylene blue and sulforhodamine 101 dyes were used in both elution and uptake experiments. Three analysis techniques for measuring diffusion coefficients were used to quantify the diffusion of solute in the hydrogel, including optical microscopy, characterization of device effluent, and NMR analyses. The optical microscopy technique analyzes images of the dye diffusion captured by a stereomicroscope to generate dye concentration v. position profiles. The data was fit to a diffusion model to determine diffusion coefficients and the dye release profile. In a typical elution experiment, aqueous solution is pumped through the microchannel and dye diffuses out of the hydrogel and into the aqueous phase. During elution, images are taken at regular time intervals and the effluent was collected. Analysis of the device effluent was performed using ultraviolet-visible (UV/Vis) spectroscopy to determine the effluent dye concentration and thus a short-time diffusion coefficient. Nuclear magnetic resonance (NMR) was used to determine a free diffusion coefficient of molecules in hydrogel without the effect of a concentration gradient. Diffusion coefficients for methylene blue and sulforhodamine 101 dyes in dex-MA hydrogel calculated using the three analysis methods all agree well. It was determined that utilizing a combination of the three techniques offers greater insight into molecular diffusion in hydrogels than employing each technique individually. The use of the same microfluidic devices used to measure diffusion is explored in the use of studying the degradation of dex-MA hydrogels. By combining what is known about the degradation rate in regards to the effect of pH and crosslinking and the ability to use a dye solution in contrast to establish the hydrogel boundaries could be a novel approach to studying hydrogel degradation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multilayered, counterflow, parallel-plate heat exchangers are analyzed numerically and theoretically. The analysis, carried out for constant property fluids, considers a hydrodynamically developed laminar flow and neglects longitudinal conduction both in the fluid and in the plates. The solution for the temperature field involves eigenfunction expansions that can be solved in terms of Whittaker functions using standard symbolic algebra packages, leading to analytical expressions that provide the eigenvalues numerically. It is seen that the approximate solution obtained by retaining the first two modes in the eigenfunction expansion provides an accurate representation for the temperature away from the entrance regions, specially for long heat exchangers, thereby enabling simplified expressions for the wall and bulk temperatures, local heat-transfer rate, overall heat-transfer coefficient, and outlet bulk temperatures. The agreement between the numerical and theoretical results suggests the possibility of using the analytical solutions presented herein as benchmark problems for computational heat-transfer codes.