981 resultados para Marker assisted selection
Resumo:
Previous studies have measured cytokine expression within follicular fluid collected at the time of trans-vaginal oocyte retrieval and compared the profiles with the aetiology of infertility and/or successful or unsuccessful assisted reproductive technology (ART) outcomes. Seventy-one paired follicular fluid and vaginal swab specimens collected from ART patients were cultured to detect microorganisms and then were tested for the presence of cytokines by multiplex fluorescence bead assays. Specimen selection was based on two criteria: whether the follicular fluid specimen was colonised (with microorganisms prior to oocyte retrieval) or contaminated by lower genital tract microflora at the time of oocyte retrieval and; the aetiology of infertility...
Resumo:
One important challenge for regenerative medicine is to produce a clinically relevant number of cells with consistent tissue-forming potential. Isolation and expansion of cells from skeletal tissues results in a heterogeneous population of cells with variable regenerative potential. A more consistent tissue formation could be achieved by identification and selection of potent progenitors based on cell surface molecules. In this study, we assessed the expression of stage-specific embryonic antigen-4 (SSEA-4), a classic marker of undifferentiated stem cells, and other surface markers in human articular chondrocytes (hACs), osteoblasts, and bone marrow-derived mesenchymal stromal cells (bmMSCs) and characterized their differentiation potential. Further, we sorted SSEA-4-expressing hACs and followed their potential to proliferate and to form cartilage in vitro. Cells isolated from cartilage and bone exhibited remarkably heterogeneous SSEA-4 expression profiles in expansion cultures. SSEA-4 expression levels increased up to approximately 5 population doublings, but decreased following further expansion and differentiation cultures; levels were not related to the proliferation state of the cells. Although SSEA-4-sorted chondrocytes showed a slightly better chondrogenic potential than their SSEA-4-negative counterparts, differences were insufficient to establish a link between SSEA-4 expression and chondrogenic potential. SSEA-4 levels in bmMSCs also did not correlate to the cells' chondrogenic and osteogenic potential in vitro. SSEA-4 is clearly expressed by subpopulations of proliferating somatic cells with a MSC-like phenotype. However, the predictive value of SSEA-4 as a specific marker of superior differentiation capacity in progenitor cell populations from adult human tissue and even its usefulness as a stem cell marker appears questionable.
Resumo:
This PhD study has examined the population genetics of the Russian wheat aphid (RWA, Diuraphis noxia), one of the world’s most invasive agricultural pests, throughout its native and introduced global range. Firstly, this study investigated the geographic distribution of genetic diversity within and among RWA populations in western China. Analysis of mitochondrial data from 18 sites provided evidence for the long-term existence and expansion of RWAs in western China. The results refute the hypothesis that RWA is an exotic species only present in China since 1975. The estimated date of RWA expansion throughout western China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. It is concluded that western China represents the limit of the far eastern native range of this species. Analysis of microsatellite data indicated high contemporary gene flow among northern populations in western China, while clear geographic isolation between northern and southern populations was identified across the Tianshan mountain range and extensive desert regions. Secondly, this study analyzed the worldwide pathway of invasion using both microsatellite and endosymbiont genetic data. Individual RWAs were obtained from native populations in Central Asia and the Middle East and invasive populations in Africa and the Americas. Results indicated two pathways of RWA invasion from 1) Syria in the Middle East to North Africa and 2) Turkey to South Africa, Mexico and then North and South America. Very little clone diversity was identified among invasive populations suggesting that a limited founder event occurred together with predominantly asexual reproduction and rapid population expansion. The most likely explanation for the rapid spread (within two years) from South Africa to the New World is by human movement, probably as a result of the transfer of wheat breeding material. Furthermore, the mitochondrial data revealed the presence of a universal haplotype and it is proposed that this haplotype is representative of a wheat associated super-clone that has gained dominance worldwide as a result of the widespread planting of domesticated wheat. Finally, this study examined salivary gland gene diversity to determine whether a functional basis for RWA invasiveness could be identified. Peroxidase DNA sequence data were obtained for a selection of worldwide RWA samples. Results demonstrated that most native populations were polymorphic while invasive populations were monomorphic, supporting previous conclusions relating to demographic founder effects in invasive populations. Purifying selection most likely explains the existence of a universal allele present in Middle Eastern populations, while balancing selection was evident in East Asian populations. Selection acting on the peroxidase gene may provide an allele-dependent advantage linked to the successful establishment of RWAs on wheat, and ultimately their invasion potential. In conclusion, this study is the most comprehensive molecular genetic investigation of RWA population genetics undertaken to date and provides significant insights into the source and pathway of global invasion and the potential existence of a wheat-adapted genotype that has colonised major wheat growing countries worldwide except for Australia. This research has major biosecurity implications for Australia’s grain industry.
Resumo:
Plants transformed with Agrobacterium frequently contain T-DNA concatamers with direct-repeat (d/r) or inverted-repeat (i/r) transgene integrations, and these repetitive T-DNA insertions are often associated with transgene silencing. To facilitate the selection of transgenic lines with simple T-DNA insertions, we constructed a binary vector (pSIV) based on the principle of hairpin RNA (hpRNA)-induced gene silencing. The vector is designed so that any transformed cells that contain more than one insertion per locus should generate hpRNA against the selective marker gene, leading to its silencing. These cells should, therefore, be sensitive to the selective agent and less likely to regenerate. Results from Arabidopsis and tobacco transformation showed that pSIV gave considerably fewer transgenic lines with repetitive insertions than did a conventional T-DNA vector (pCON). Furthermore, the transgene was more stably expressed in the pSIV plants than in the pCON plants. Rescue of plant DNA flanking sequences from pSIV plants was significantly more frequent than from pCON plants, suggesting that pSIV is potentially useful for T-DNA tagging. Our results revealed a perfect correlation between the presence of tail-to-tail inverted repeats and transgene silencing, supporting the view that read-through hpRNA transcript derived from i/r T-DNA insertions is a primary inducer of transgene silencing in plants. © CSIRO 2005.
Resumo:
In binary vectors, the antibiotic resistance gene used for selection of transformed plant cells is also usually expressed in the transforming Agrobacterium cells. This expression gives the bacterium antibiotic resistance, an unnecessary advantage on selective medium containing the antibiotic. Insertion of a castor bean catalase-1 (CAT-1) gene intron or a Parasponia andersonii haemoglobin gene intron into the coding region of the selectable marker gene, hph, completely abolished the expression of the gene in Agrobacterium, rendering it susceptible to hygromycin B. Use of these modified binary vectors minimized the overgrowth of Agrobacterium during plant transformation. Both of the introns were correctly spliced in plant cells and significantly enhanced hph gene expression in transformed rice tissue. The presence of these introns in the hph coding sequence not only maintained the selection efficiency of the hph gene, but with the CAT-1 intron also substantially increased the frequency of rice transformation. Transgenic lines with an intron-hph gene generally contained fewer gene copies and produced substantially more mRNA of the predicted size. Our results also indicate that transgenic plants with many copies of the transgene were more likely to show gene silencing than plants with 1-3 copies.
Resumo:
The effectiveness of different promoters for use in Indica rice transformation was compared. Plasmids encoding the Escherichia coli uidA (gus) gene under the control of CaMV 35S, Emu, Act1 or Ubi1 promoters were delivered into cell suspension cultures by particle bombardment. Transient gene expression, 48 h after delivery, was greatest from plasmids utilising the constitutive promoters, Act1 and Ubi1. Gene expression in stably transformed tissue was examined by bombarding embryogenic Indica rice calli with a pUbil-gus plasmid and a plasmid containing either the selectable marker gene, hph, which confers hygromycin resistance, or bar, which confers resistance to the herbicide phosphinothricin (BASTA) each under the control of the CaMV 35S, Emu, Act1 or the Ubi1 promoters. The bombarded calli were placed on the appropriate selection media and stained for GUS activity at 1 day, 3 weeks and 5 weeks after shooting. Callus bombarded with the pUbi1-hph or the pEmu-hph constructs gave a dramatic increase in the size of the GUS staining areas with time. No such increase in the size of GUS staining areas was observed in calli co-bombarded with pUbi1-gus and any of the bar containing constructs. Co-bombardment of calli with either the pEmu-hph or pUbi1-hph construct and a virus minor coat protein (cp) gene construct resulted in many fertile transgenic Indica rice plants, containing one to eight copies of both the hph and cp genes. These genes were stably inherited by the T 1 generation.
Resumo:
The striped catfish (Pangasianodon hypophthalmus) culture industry in the Mekong Delta in Vietnam has developed rapidly over the past decade. The culture industry now however, faces some significant challenges, especially related to climate change impacts notably from predicted extensive saltwater intrusion into many low topographical coastal provinces across the Mekong Delta. This problem highlights a need for development of culture stocks that can tolerate more saline culture environments as a response to expansion of saline water-intruded land. While a traditional artificial selection program can potentially address this need, understanding the genomic basis of salinity tolerance can assist development of more productive culture lines. The current study applied a transcriptomic approach using Ion PGM technology to generate expressed sequence tag (EST) resources from the intestine and swim bladder from striped catfish reared at a salinity level of 9 ppt which showed best growth performance. Total sequence data generated was 467.8 Mbp, consisting of 4,116,424 reads with an average length of 112 bp. De novo assembly was employed that generated 51,188 contigs, and allowed identification of 16,116 putative genes based on the GenBank non-redundant database. GO annotation, KEGG pathway mapping, and functional annotation of the EST sequences recovered with a wide diversity of biological functions and processes. In addition, more than 11,600 simple sequence repeats were also detected. This is the first comprehensive analysis of a striped catfish transcriptome, and provides a valuable genomic resource for future selective breeding programs and functional or evolutionary studies of genes that influence salinity tolerance in this important culture species.
Resumo:
Limbal microvascular endothelial cells (L-MVEC) contribute to formation of the corneal-limbal stem cell niche and to neovascularization of diseased and injuries corneas. Nevertheless, despite these important roles in corneal health and disease, few attempts have been made to isolate L-MVEC with the view to studying their biology in vitro. We therefore explored the feasibility of generating primary cultures of L-MVEC from cadaveric human tissue. We commenced our study by evaluating growth conditions (MesenCult-XF system) that have been previously found to be associated with expression of the endothelial cell surface marker thrombomodulin/CD141, in crude cultures established from collagenase-digests of limbal stroma. The potential presence of L-MVEC in these cultures was examined by flow cytometry using a more specific marker for vascular endothelial cells, CD31/PECAM-1. These studies demonstrated that the presence of CD141 in crude cultures established using the MesenCult-XF system is unrelated to L-MVEC. Thus we subsequently explored the use of magnetic assisted cell sorting (MACS) for CD31 as a tool for generating cultures of L-MVEC, in conjunction with more traditional endothelial cell growth conditions. These conditions consisted of gelatin-coated tissue culture plastic and MCDB-131 medium supplemented with fetal bovine serum (10% v/v), D-glucose (10 mg/mL), epidermal growth factor (10 ng/mL), heparin (50 μg/mL), hydrocortisone (1 μg/mL) and basic fibroblast growth factor (10 ng/mL). Our studies revealed that use of endothelial growth conditions are insufficient to generate significant numbers of L-MVEC in primary cultures established from cadaveric corneal stroma. Nevertheless, through use of positive-MACS selection for CD31 we were able to routinely observe L-MVEC in cultures derived from collagenase-digests of limbal stroma. The presence of L-MVEC in these cultures was confirmed by immunostaining for von Willebrand factor (vWF) and by ingestion of acetylated low-density lipoprotein. Moreover, the vWF+ cells formed aligned cell-to-cell ‘trains’ when grown on Geltrex™. The purity of L-MVEC cultures was found to be unrelated to tissue donor age (32 to 80 years) or duration in eye bank corneal preservation medium prior to use (3 to 10 days in Optisol) (using multiple regression test). Optimal purity of L-MVEC cultures was achieved through use of two rounds of positive-MACS selection for CD31 (mean ± s.e.m, 65.0 ± 20.8%; p<0.05). We propose that human L-MVEC cultures generated through these techniques, in conjunction with other cell types, will provide a useful tool for exploring the mechanisms of blood vessel cell growth in vitro.
Resumo:
Advances in the field of Assisted Reproductive Technology (ART) have been revolutionary. This book focuses on the use of ARTs in the context of families who seek to conceive a matching sibling donor as a source of tissue to treat an existing sick child. Such children have been referred to as ‘saviour siblings’. Considering the legal and regulatory frameworks that impact on the accessibility of this technology in Australia and the UK, the work analyses the ethical and moral issues that arise from the use of the technology for this specific purpose. The author claims the only justification for limiting a family’s reproductive liberty in this context is where the exercise of reproductive decision-making results in harm to others. It is argued that the harm principle is the underlying feature of legislative action in Western democratic society, and as such, this principle provides the grounds upon which a strong and persuasive argument is made for a less-restrictive regulatory approach in the context of ‘saviour siblings’.
Resumo:
A molecular marker-based map of perennial ryegrass (Lolium perenne L.) has been constructed through the use of polymorphisms associated with expressed sequence tags (ESTs). A pair-cross between genotypes from a North African ecotype and the cultivar Aurora was used to generate a two-way pseudo-testcross population. A selection of 157 cDNAs assigned to eight different functional categories associated with agronomically important biological processes was used to detect polymorphic EST–RFLP loci in the F1(NA6 × AU6) population. A comprehensive set of EST–SSR markers was developed from the analysis of 14,767 unigenes, with 310 primer pairs showing efficient amplification and detecting 113 polymorphic loci. Two parental genetic maps were produced: the NA6 genetic map contains 88 EST–RFLP and 71 EST–SSR loci with a total map length of 963 cM, while the AU6 genetic map contains 67 EST–RFLP and 58 EST–SSR loci with a total map length of 757 cM. Bridging loci permitted the alignment of homologous chromosomes between the parental maps, and a sub-set of genomic DNA-derived SSRs was used to relate linkage groups to the perennial ryegrass reference map. Regions of segregation distortion were identified, in some instances in common with other perennial ryegrass maps. The EST-derived marker-based map provides the basis for in silico comparative genetic mapping, as well as the evaluation of co-location between QTLs and functionally associated genetic loci.
Resumo:
RFLP markers are currently the most appropriate marker system for the identification of uncharacterised polymorphism at the interspecific and intergeneric level. Given the benefits of a PCR-based marker system and the availability of sequence information for many Solanaceous cDNA clones, it is now possible to target conserved fragments, for primer development, that flank sequences possessing interspecific polymorphism. The potential outcome is the development of a suite of markers that amplify widely in Solanaceae. Temperature gradient gel electrophoresis (TGGE) is a relatively inexpensive gel-based system that is suitable for the detection of most single-base changes. TGGE can be used to screen for both known and unknown polymorphisms, and has been assessed here, for the development of PCR-based markers that are useful for the detection of interspecific variation within Solanaceae. Fifteen markers are presented where differences between Lycopersicon esculentum and L. pennellii have been detected by TGGE. The markers were assessed on a wider selection of plant species and found to be potentially useful for the identification of interspecific and intergeneric polymorphism in Solanaceous plants.
Resumo:
The complications of impaction bone grafting in revision hip replacement includes fracture of he femur and subsidence of the prosthesis. In this in vitro study we aimed to investigate whether the use of vibration, combined with a perforated tamp during the compaction of morsellised allograft would reduce peak loads and hoop strains in the femur as a surrogate marker of the risk of fracture and whether it would also improve graft compaction and prosthetic stability. We found that the peak loads and hoop strains transmitted to the femoral cortex during graft compaction and subsidence of the stem in subsequent mechanical testing were reduced. This innovative technique has the potential to reduce the risk of intra-operative fracture and to improve graft compaction and therefore prosthetic stability. © 2007 British Editorial Society of Bone and Joint Surgery.
Resumo:
Microsatellites have become the preferred molecular markers for strain selection and genetic breeding in fish. In this study a total of 105 microsatellites were isolated and identified in gibel carp (Carassius auratus gibelio) by microsatellite sequence searches in GenBank and other databases and by screening and sequencing of positive clones from the genomic library enriched for AG and GATA repeats. Moreover, nineteen microsatellites were randomly selected to design locus-specific primer pairs, and these were successfully used to identify and discriminate different cultured strains of gibel carp including strains A, D, L, and F. Three different types of microsatellite pattern were distinguished by the number and length of fragments amplified from the 19 primer pairs, and some microsatellite primer pairs were found to produce different microsatellite patterns among strains and strain-specific fragments. In addition, some duplicated alleles were also detected in two microsatellite patterns. Therefore, the current study provides direct molecular markers to discriminate among different cultured strains for selective breeding and aquaculture practice of gibel carp.
Resumo:
The gene targeting technique is a powerful tool for analyzing functions of cloned genes and for generating transgenic animals with site-directed integration of foreign genes. In order to develop this technique in fish, positive-negative selection (PNS) and homologous recombination vectors were constructed, and their expression was examined in fish cells. A vector (pNK) for PNS consists of the neomycin resistance gene (neo) as a positive selectable marker gene and the herpes simplex virus (HSV) thymidine kinase (tk) gene as a negative selectable marker gene. Positive selection with geneticin (G418) of epithelioma papulosum of carp (EPC) cells transfected with linearized pNK vector yielded 350 colonies, while double selection of transfected EPC cells with G418 and gancyclovir (Gc) resulted in nearly complete cell death, demonstrating that the PNS procedure is effective in fish cells. Homologous recombination vectors consist of the Xiphophorus melanoma receptor kinase (X mrk(Y)) gene as homologous sequence in addition to the neo and tk genes. Conditions for homologous recombination vector transfection and drug selection were established. After verification of the feasibility of expression of homologous recombination vectors in EPC cells, the first gene targeting experiments were attempted in the Xiphophorus melanoma cell line, PSM. Positive-negative selection of the targeting vector-transfectants led to a low enrichment in this particular cell line. The reasons for the low enrichment in PSM cells were discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This study examines the relation between selection power and selection labor for information retrieval (IR). It is the first part of the development of a labor theoretic approach to IR. Existing models for evaluation of IR systems are reviewed and the distinction of operational from experimental systems partly dissolved. The often covert, but powerful, influence from technology on practice and theory is rendered explicit. Selection power is understood as the human ability to make informed choices between objects or representations of objects and is adopted as the primary value for IR. Selection power is conceived as a property of human consciousness, which can be assisted or frustrated by system design. The concept of selection power is further elucidated, and its value supported, by an example of the discrimination enabled by index descriptions, the discovery of analogous concepts in partly independent scholarly and wider public discourses, and its embodiment in the design and use of systems. Selection power is regarded as produced by selection labor, with the nature of that labor changing with different historical conditions and concurrent information technologies. Selection labor can itself be decomposed into description and search labor. Selection labor and its decomposition into description and search labor will be treated in a subsequent article, in a further development of a labor theoretic approach to information retrieval.