976 resultados para Marine technology
Resumo:
Carbonate sediments are dynamic three-dimensional environments where the surface layers are constantly moving and mixing due to the energy of the water column. It is also an environment of dynamic biological, chemical and physical interaction and modification. The biological community can actively influence changes to sediment characteristics and associated biochemistry. Bioturbation resulting from macrofaunal activity disrupts sediment structure and biochemical arrangements and reduces the critical shear forces required to move sediment particles, adding to the dynamic and complex physical and biogeochemical nature of the sediment. Laboratory studies using both planner optodes and glass needle microsensors were used to measure abiotic sediment characteristics such as the depth distribution and concentrations of PAR. The biochemical nature of coral reef sediment were also investigated, specifically the quantification and the distribution of dissolved oxygen within coarse and fine-grained sediments under regimes of light and darkness. Results highlighted the significant contribution microalgal productivity and bioturbation has on distribution of dissolved oxygen in the upper sediment layers. On the reef flat a shallow water lander system was employed to measure concentrations of O2, pH, S, Ca and temperature over periods of 24 to 48 hours in coarse and fine-grained sediments. Similarities between laboratory and in situ results where evident, however the in situ environment was more dynamic and the distribution and concentrations of dissolved oxygen were more complex and correlated to irradiance, temperature and biological activity. Microsensor technology provides us with the opportunity to study, at very high resolutions, the upper irradiated; photosynthetically active regions of aquatic sediments along with anoxic processes deeper in sub-euphotic regions of the sediments.
Resumo:
This thesis presents a techno-economic investigation of the generation of electricity from marine macroalgae (seaweed) in the UK (Part 1), and the production of anhydrous ammonia from synthesis gas (syngas) generated from biomass gasification (Part 2). In Part 1, the study covers the costs from macroalgae production to the generation of electricity via a CHP system. Seven scenarios, which varied the scale and production technique, were investigated to determine the most suitable scale of operation for the UK. Anaerobic digestion was established as the most suitable technology for macroalgae conversion to CHP, based on a number of criteria. All performance and cost data have been taken from published literature. None of the scenarios assessed would be economically viable under present conditions, although the use of large-scale electricity generation has more potential than small-scale localised production. Part 2 covers the costs from the delivery of the wood chip feedstock to the production of ammonia. Four cases, which varied the gasification process used and the scale of production, were investigated to determine the most suitable scale of operation for the UK. Two gasification processes were considered, these were O2-enriched air entrained flow gasification and Fast Internal Circulating Fluidised Bed. All performance and cost data have been taken from published literature, unless otherwise stated. Large-scale (1,200 tpd) ammonia production using O2-enriched air entrained flow gasification was determined as the most suitable system, producing the lowest ammonia-selling price, which was competitive to fossil fuels. Large-scale (1,200 tpd) combined natural gas/biomass syngas ammonia production also generated ammonia at a price competitive to fossil fuels.
Resumo:
We thank Prof. David O’Hagan and Dr Qingzhi Zhang (University of St Andrews, UK) for their helpful discussion and for providing the synthetic 50 -FDA sample. This work is supported by National Natural Science Foundation of China (No. 81503086), a starting funding (No. 20140520) from Tianjin University of Science & Technology, a research funding of “1000 Talents Plan” of Tianjin (to LM) and Foundation of Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education and Tianjin Key Lab of Industrial Microbiology (No. 2015IM106)
Resumo:
Peer reviewed
Resumo:
Acknowledgements This work received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (Grant reference HR09011) and contributing institutions.
Resumo:
Acknowledgements This work received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (Grant reference HR09011) and contributing institutions.
Resumo:
Funded by UK Natural Environment Research Council European Commission. Grant Number: 227799 TOTAL Foundation MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) Scottish Funding Council. Grant Number: HR09011
Resumo:
Dechlorane Plus (DP) is a proposed alternative to the legacy flame retardant decabromodiphenyl ether (BDE-209), a major component of Deca-BDE formulations. In contrast to BDE-209, toxicity data for DP are scarce and often focused on mice. Validated dietary in vivo exposure of the marine bivalve (Mytilus galloprovincialis) to both flame retardants did not induce effects at the physiological level (algal clearance rate), but induced DNA damage, as determined by the comet assay, at all concentrations tested. Micronuclei formation was induced by both DP and BDE-209 at the highest exposure concentrations (100 and 200 mu g/L, respectively, at 18% above controls). DP caused effects similar to those by BDE-209 but at lower exposure concentrations (5.6, 56, and 100 mu g/L for DP and 56, 100, and 200 mu g/L for BDE-209). Moreover, bioaccumulation of DP was shown to be concentration dependent, in contrast to BDE-209. The results described suggest that DP poses a greater genotoxic potential than BDE-209
Resumo:
Dechlorane Plus (DP) is a proposed alternative to the legacy flame retardant decabromodiphenyl ether (BDE-209), a major component of Deca-BDE formulations. In contrast to BDE-209, toxicity data for DP are scarce and often focused on mice. Validated dietary in vivo exposure of the marine bivalve (Mytilus galloprovincialis) to both flame retardants did not induce effects at the physiological level (algal clearance rate), but induced DNA damage, as determined by the comet assay, at all concentrations tested. Micronuclei formation was induced by both DP and BDE-209 at the highest exposure concentrations (100 and 200 mu g/L, respectively, at 18% above controls). DP caused effects similar to those by BDE-209 but at lower exposure concentrations (5.6, 56, and 100 mu g/L for DP and 56, 100, and 200 mu g/L for BDE-209). Moreover, bioaccumulation of DP was shown to be concentration dependent, in contrast to BDE-209. The results described suggest that DP poses a greater genotoxic potential than BDE-209
Resumo:
Antimicrobial peptides (AMPs) are gene encoded, small sized, generally cationic, amphiphathic peptides characterized by antimicrobial activity against bacteria, fungi, viruses and other pathogens. They are a major component of the innate immune defense system of almost all living organisms, ranging from bacteria to humans and represent the first line of defense against the invading microbial pathogens (Boman, 1995; Zasloff, 2002). Antimicrobial peptides represent a heterogeneous group displaying multiple modes of action that are determined by the sequence and concentration of peptides. Their remarkable specificity for prokaryotes with low toxicity for eukaryotic cells has favored their investigation and exploitation as new antibiotics
Resumo:
This archive provides supporting data with forcings, data and plotting scripts for the paper P. N. Blossey, C. S. Bretherton, A. Cheng, S. Endo, T. Heus, A. Lock and J. J. van der Dussen, 2016. CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO2 quadrupling and a CMIP3-composite forcing change. J. Adv. Model. Earth Syst., Under revision.
Resumo:
Leptin is a multifunctional hormone, produced predominantly in adipocytes. It regulates energy balance through its impact on appetite and fat metabolism, and its concentration indicates the size of body fat reserves. Leptin also plays a vital role in stretch-induced surfactant production during alveolar development in the fetus. The structure, expression pattern, and role of leptin have not previously been explored in marine mammals. Phocid seals undergo cyclical changes in body composition as a result of prolonged fasting and intensive foraging bouts and experience rapid, dramatic, and repeated changes in lung volume during diving. Here, we report the tissue-specific expression pattern of leptin in these animals. This is the first demonstration of leptin expression in the lung tissue of a mature mammal, in addition to its expression in the blubber and bone marrow, in common with other animals. We propose a role for leptin in seal pulmonary surfactant production, in addition to its likely role in long-term energy balance. We identify substitutions in the phocine leptin sequence in regions normally highly conserved between widely distinct vertebrate groups, and, using a purified seal leptin antiserum, we confirm the presence of the leptin protein in gray seal lung and serum fractions. Finally, we report the substantial inadequacies of using heterologous antibodies to measure leptin in unextracted gray seal serum.
Resumo:
This paper investigates factors affecting anaerobic degradation of marine macro-algae (or seaweed), when used as a co-substrate with terrestrial plant biomass for the production of biogas. Using Laminaria digitata, a brown marine seaweed species and green peas, results showed that when only 2% of feedstock of a reactor treating the green peas at an organic loading rate (OLR) of 2.67 kg VS.m3.day-1 was replaced with the seaweed, methane production was disrupted, whilst acidogenesis, seemed to be less adversely affected, resulting in excessive volatile acids accumulation. Reactor stability was difficult to achieve thereafter. The experiment was repeated with a lower initial OLR of green peas of 0.70 kg VS.m3.day-1 before the addition of the seaweed. Although similar symptoms as in first trial were observed, process stability was restored through the control of OLR and alkalinity. These measures led to an increase in overall OLR of 1.25 kg VS.m3.day-1 comprising of 35% seaweed. This study has shown that certain seaweed constituents are more inhibitory to the methanogens even at trace concentrations than to the other anaerobic digestion microbial groups. Appropriate adaptation strategy, involving initial low proportion of the seaweed relative to the total OLR, and overall low OLR, is necessary to ensure effective adaptation of the microorganisms to the inhibitory constituents of seaweed. Where there is seasonal availability of seaweed, the results of this study suggest that a fresh adaptation or start-up strategy must be implemented during each cycle of seaweed availability in order to ensure sustainable process stability.
Resumo:
Marine Renewable Energy Conversion systems comprise wave energy and tidal stream converters as well as offshore-wind turbines for electrical generation. These technologies are currently at different stages of development but are mostly at the pre-commercial stage and require research to be undertaken at a series of scales along the path to commercialization. However each of these technologies also needs specific research infrastructures in order to conduct this research. The aim of the MARINET initiative is to coordinate research and development at all scales (small models through to prototype scales, from laboratories through to open sea tests) and to allow access for researchers and developers to infrastructures which are not available universally in Europe, including test facilities for components such as power take-off systems, grid integration, moorings and environmental monitoring so as to ensure a focusing of activities in this area. The initiative offers researchers and developers access to 45 research facilities as well as to the associated network of expertise at all scales in Offshore Marine Renewable Energy technology research and development. The aim of this paper is to present this MARINET initiative that was started in 2011, bringing together a network of 29 partners spread across twelve countries. Details of the MARINET Transnational Access (TA) program are presented, for which over 260 applications were received throughout the 5 official calls for proposals. In particular, statistics on applications and completed projects are presented which provide an overview of the global development progress of the different offshore renewable energy conversion technologies at a European level. It also provides a good overview of the current research activity, as well as evidence of the requirement for specialised research facilities, in this burgeoning field.
Development of a simple and fast “DNA extraction kit” for sea food identification and marine species
Resumo:
Seafood products fraud, the misrepresentation of them, have been discovered all around the world in different forms as false labeling, species substitution, short-weighting or over glazing in order to hide the correct identity, origin or weight of the seafood products. Due to the value of seafood products such as canned tuna, swordfish or grouper, these species are the subject of the commercial fraud is mainly there placement of valuable species with other little or no value species. A similar situation occurs with the shelled shrimp or shellfish that are reduced into pieces for the commercialization. Food fraud by species substitution is an emerging risk given the increasingly global food supply chain and the potential food safety issues. Economic food fraud is committed when food is deliberately placed on the market, for financial gain deceiving consumers (Woolfe, M. & Primrose, S. 2004). As a result of the increased demand and the globalization of the seafood supply, more fish species are encountered in the market. In this scenary, it becomes essential to unequivocally identify the species. The traditional taxonomy, based primarily on identification keys of species, has shown a number of limitations in the use of the distinctive features in many animal taxa, amplified when fish, crustacean or shellfish are commercially transformed. Many fish species show a similar texture, thus the certification of fish products is particularly important when fishes have undergone procedures which affect the overall anatomical structure, such as heading, slicing or filleting (Marko et al., 2004). The absence of morphological traits, a main characteristic usually used to identify animal species, represents a challenge and molecular identification methods are required. Among them, DNA-based methods are more frequently employed for food authentication (Lockley & Bardsley, 2000). In addition to food authentication and traceability, studies of taxonomy, population and conservation genetics as well as analysis of dietary habits and prey selection, also rely on genetic analyses including the DNA barcoding technology (Arroyave & Stiassny, 2014; Galimberti et al., 2013; Mafra, Ferreira, & Oliveira, 2008; Nicolé et al., 2012; Rasmussen & Morrissey, 2008), consisting in PCR amplification and sequencing of a COI mitochondrial gene specific region. The system proposed by P. Hebert et al. (2003) locates inside the mitochondrial COI gene (cytochrome oxidase subunit I) the bioidentification system useful in taxonomic identification of species (Lo Brutto et al., 2007). The COI region, used for genetic identification - DNA barcode - is short enough to allow, with the current technology, to decode sequence (the pairs of nucleotide bases) in a single step. Despite, this region only represents a tiny fraction of the mitochondrial DNA content in each cell, the COI region has sufficient variability to distinguish the majority of species among them (Biondo et al. 2016). This technique has been already employed to address the demand of assessing the actual identity and/or provenance of marketed products, as well as to unmask mislabelling and fraudulent substitutions, difficult to detect especially in manufactured seafood (Barbuto et al., 2010; Galimberti et al., 2013; Filonzi, Chiesa, Vaghi, & Nonnis Marzano, 2010). Nowadays,the research concerns the use of genetic markers to identify not only the species and/or varieties of fish, but also to identify molecular characters able to trace the origin and to provide an effective control tool forproducers and consumers as a supply chain in agreementwith local regulations.