957 resultados para Marginal structural model


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Com base no crescimento exponencial das populações urbanas, a demanda por espaço para habitação tem crescido vertiginosamente. Para atender a estas necessidades, edificações cada vez mais altas e mais esbeltas são projetadas e vãos cada vez maiores são utilizados. Novos materiais são criados e aprimorados para que seja extraído o máximo de desempenho com o menor custo. Deste modo, esta dissertação tem como objetivo o estudo do comportamento e otimização do projeto estrutural de edifícios. Para tal, considera-se ao longo do estudo o projeto de uma edificação de concreto armado com 47 metros de altura e 15 pavimentos, submetida às ações das cargas usuais de projeto atuantes sobre edifícios residenciais, além das cargas de vento. No que tange ao desenvolvimento do modelo computacional são empregadas técnicas usuais de discretização, via método dos elementos finitos, por meio do programa ANSYS. Inicialmente, a resposta estática e dinâmica do modelo estrutural é obtida e comparada com base nos valores limites propostos por normas de projeto. A partir de análises qualitativas e quantitativas desenvolvidas sobre a resposta estrutural do modelo em estudo são utilizadas técnicas de otimização com o objetivo de modificar e aprimorar o desempenho estrutural do edifício analisado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atualmente, os projetos de edifícios altos necessitam cada vez mais de sistemas estruturais simples, que agilizem sua montagem, reduzindo os custos e promovendo maior flexibilidade de utilização para os espaços construídos. Com essa finalidade, estruturas com poucas vigas vêm sendo muito utilizadas. Entretanto, o sistema estrutural com poucas vigas pode ocasionar dois tipos de problemas, relacionados entre si, a saber: diminuição do sistema de contraventamento da edificação e vibrações excessivas. Portanto, é fundamental, nesses casos, a verificação da estabilidade global da estrutura, utilizando índices de sensibilidade além de outros parâmetros de projeto, como também, o desenvolvimento de um estudo minucioso acerca do conforto humano da edificação. Assim sendo, neste trabalho de pesquisa foram investigados quatro modelos estruturais de edifícios altos de concreto armado, com base no estudo da variação entre o número de pavimentos e a quantidade de vigas existentes em cada modelo, objetivando-se verificar quais os efeitos que tais variações podem vir a gerar sobre a estabilidade global e, bem como, sobre o conforto humano dos sistemas estruturais investigados. A modelagem numérica dos edifícios em estudo foi realizada através do emprego do programa ANSYS e, para tal, foram utilizadas técnicas básicas de discretização, por meio do método dos elementos finitos. As conclusões alcançadas ao longo da investigação versam acerca do estudo da resposta estrutural estática e dinâmica dos edifícios, no que diz respeito as variações dos valores dos parâmetros de instabilidade, dos valores dos deslocamentos e esforços, e, bem como, dos níveis de conforto humano de cada modelo estrutural analisado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes large-scale simulations of compressible flows over a supersonic disk-gap-band parachute system. An adaptive mesh refinement method is used to resolve the coupled fluid-structure model. The fluid model employs large-eddy simulation to describe the turbulent wakes appearing upstream and downstream of the parachute canopy and the structural model employed a thin-shell finite element solver that allows large canopy deformations by using subdivision finite elements. The fluid-structure interaction is described by a variant of the Ghost-Fluid method. The simulation was carried out at Mach number 1.96 where strong nonlinear coupling between the system of bow shocks, turbulent wake and canopy is observed. It was found that the canopy oscillations were characterized by a breathing type motion due to the strong interaction of the turbulent wake and bow shock upstream of the flexible canopy. Copyright © 2010 by ASME.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIM: To investigate the interaction between human CCR5 receptors (CCR5) and HIV-1 envelope glycoprotein gp120 (HIV-1 gp120) and HIV-1 receptor CD4 antigens (CD4). METHODS: The structurally con served regions (SCR) of human CCR5 was built by the SYBYL/Biopolymer module using the corresponding transmembrane (TM) domain of bacteriorhodopsin (bR) as the template. The coordinates for amino-ter minal residue sequence, and carboxyl-terminal residue sequence, extracellular and cytoplasmic loops were generated using LOOP SEARCH algorithm. Subsequently the structural model was merged into the complex with HIV-1 gp120 and CD4. RESULTS: Human CCR5 interacted with both an HIV-1 gp120 and CD4. The N-terminal residues (especially Met1 and Gln4) of human CCR5, contacted with CD4 residues, mainly 7Nith one span (56 - 59) of CD4 in electrostatic interaction and hydrogen-bonds. The binding sites of human CCR5 were buried in a hydrophobic center surrounded by a highly basic periphery. On the other hand, direct interatomic contacts were made between ? CCR5 residues and 6 gp120 amino-acid residues, which included van der Waals contacts, hydrophobic interaction, and hydrogen bonds. CONCLUSION: The interaction model should be helpful for rational design of novel anti-HIV drugs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerous structures uplift under the influence of strong ground motion. Although many researchers have investigated the effects of base uplift on very stiff (ideally rigid) structures, the rocking response of flexible structures has received less attention. Related practical analysis methods treat these structures with simplified 'equivalent' oscillators without directly addressing the interaction between elasticity and rocking. This paper addresses the fundamental dynamics of flexible rocking structures. The nonlinear equations of motion, derived using a Lagrangian formulation for large rotations, are presented for an idealized structural model. Particular attention is devoted to the transition between successive phases; a physically consistent classical impact framework is utilized alongside an energy approach. The fundamental dynamic properties of the flexible rocking system are compared with those of similar linear elastic oscillators and rigid rocking structures, revealing the distinct characteristics of flexible rocking structures. In particular, parametric analysis is performed to quantify the effect of elasticity on uplift, overturning instability, and harmonic response, from which an uplifted resonance emerges. The contribution of stability and strength to the collapse of flexible rocking structures is discussed. © 2012 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inflatable aerodynamic decelerators present potential advantages for planetary entry in missions of robotic and human exploration. The design of these structures face many engineering challenges, including complex deformable geometries, anisotropic material response, and coupled shockturbulence interactions. In this paper, we describe a comprehensive computational fluid-structure interaction study of an inflation cycle of a tension cone decelerator in supersonic flow and compare the simulations with earlier published experimental results. The aeroshell design and flow conditions closely match recent experiments conducted at Mach 2.5. The structural model is a 16-sided polygonal tension cone with seams between each segment. The computational model utilizes adaptive mesh refinement, large-eddy simulation, and shell mechanics with self-contact modeling to represent the flow and structure interaction. This study focuses on the dynamics of the structure as the inflation pressure varies gradually, and the behavior of forces experienced by the flexible and rigid (the payload capsule) structures. © 2011 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rocking response of structures subjected to strong ground motions is a problem of 'several scales'. While small structures are sensitive to acceleration pulses acting successively, large structures are more significantly affected by coherent low frequency components of ground motion. As a result, the rocking response of large structures is more stable and orderly, allowing effective isolation from the ground without imminent danger of overturning. This paper aims to characterize and predict the maximum rocking response of large and flexible structures to earthquakes using an idealized structural model. To achieve this, the maximum rocking demand caused by different earthquake records was evaluated using several ground motion intensity measures. Pulse-type records which typically have high peak ground velocity and lower frequency content caused large rocking amplitudes, whereas non-pulse type records caused random rocking motion confined to small rocking amplitudes. Coherent velocity pulses were therefore identified as the primary cause of significant rocking motion. Using a suite of pulse-type ground motions, it was observed that idealized wavelets fitted to velocity pulses can adequately describe the rocking response of large structures. Further, a parametric analysis demonstrates that pulse shape parameters affect the maximum rocking response significantly. Based on these two findings, a probabilistic analysis method is proposed for estimating the maximum rocking demand to pulse-type earthquakes. The dimensionless demand maps, produced using these methods, have predictive power in the near-field provided that pulse period and amplitude can be estimated a priori. Use of this method within a probabilistic seismic demand analysis framework is briefly discussed. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coadsorption of ferrocene-terminated alkanethiols (FcCO(2)(CH2)(8)SH, Fc=(mu(5)-C5H5)Fe(mu(5)-C5H4)) with alkylthiophene thiols (2-mercapto-3-n-octylthiophene) yields stable, electroactive self-assembled monolayers on gold. The resulting mixed monolayer provides an energetically favorable hydrophobic surface for the adsorption of the surfactant aggregates in aqueous solution. The adsorptions have been characterized via their effect on the redox properties of ferrocenyl alkanethiols immobilized as minority components in the monolayers and on the interfacial capacitance of the electrode. Surfactant adsorption causes a decrease in the overall capacitance at the electrode and dramatically shifts the redox potential for ferrocene oxidation in a positive or negative direction depending on the identity of the surfactant employed. A structural model is proposed in which the alkane chains of the adsorbed surfactants interdigitate with those of the underlying self-assembled monolayer, leading to the formation of a hybrid bilayer membrane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A conducting layer with the conductivity of 1.2 Omega(-1)cm(-1) stripped in a solvent from KrF-laser-irradiated polyimide thin film is taken as a sample to determine the microstructure of the conducting layer. Fourier-transform infrared and X-ray photoelectron spectroscopies show the formation of the carbon-rich clusters after irradiation. The element analysis gives the atomic ratio of C:H:N:O for the carbon-rich cluster as 60:20:3:1. Wide-angle X-ray diffraction indicates that the conducting layer is mainly amorphous carbon with a small amount of the short-range ordered carbon-rich clusters. This study suggests a structural model with three-layer carbon sheets linked together in a random fashion for the short-range ordered carbon-rich clusters. The interplanar spacing is 3.87 Angstrom and the layer diameter 25 Angstrom. The transport model of variable-range hopping in three dimensions is used to explain the conducting behavior of the conducting layer. In our case, the short-range ordered carbon-rich clusters are assumed to be conducting islands dispersed in the amorphous carbon-rich cluster matrix.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

TTHA complexes with diamagnetic rare earth ions (La3+, Y3+ and LU(3+)) were studied by H-1 and C-13 NMR spectroscopy. A symmetric structural model was suggested for La(TTHA) complex and an asymmetric model for Y(TTHA) and Lu(TTHA) complexes. The complex formation was dependent on the pH value of the solution. The interactions of La(TTHA) with the additional metal ions (La3+, Y3+ and Ca2+) were relatively weak, but relatively strong for that of Lu(TTHA) with the additional Lu3+.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the production tail of oilfield, water-cut is very high in thick channel sand oil reservoir, but recovery efficiency is relative low, and recoverable remaining oil reserves is more abundant, so these reserves is potential target of additional development. The remaining oil generally distributed with accumulation in certain areas, controlled by the reservoir architecture that mainly is the lateral accretion shale beddings in the point bar, so the study of reservoir architecture and the remaining oil distribution patterns controlled by architecture are very significant. In this paper, taking the Minghuazhen formation of Gangxi oilfield as a case, using the method of hierarchy analysis, pattern fitting and multidimensional interaction, the architecture of the meandering river reservoir is precisely anatomized, and the remaining oil distribution patterns controlled by the different hierarchy architecture are summarized, which will help to guide the additional development of oil fields. Not only is the study significant to the remaining oil forecasting, but also it is important for the theory development of reservoir geology. With the knowledge of sequence correlation and fluvial correlation model, taking many factors into account, such as combination of well and seismic data, hierarchical controlling, sedimentary facies restraint, performance verification and 3-D closure, an accurate sequence frame of the study area was established. On the basis of high-resolution stratigraphic correlation, single layer and oil sand body are correlated within this frame, and four architecture hierarchies, composite channel, single channels, point bars and lateral accretion sandbody are identified, The result indicates that Minghuazhen Formation of Gangxi oilfield are dominated by meandering river deposition, including two types of channel sandbodies, narrow band and wide band channel sandbody, and each of them has different characteristics of facies variation laterally. Based on the identification of composite channel, according to the spatial combination patterns and identified signs of single channel, combined with channel sandbody distribution and tracer material data, single channel sandbodies are identified. According to empirical formula, point-bar scales of the study area are predicted, and three identification signs are summarized, that is, positive rhythm in depositional sequence, the maximum thick sand and near close to the abandoned channel, and point bars are identified. On the basis of point bar recognition, quantitative architecture models inner point bar are ascertained, taking the lateral accretion sand body and lateral accretion shale beddings in single well as foundation, and quantitative architecture models inner point bar as guidance, and result of tracer material data as controlling, the the lateral accretion sand body and lateral accretion shale beddings are forecasted interwell, so inner architecture of point bar is anatomied. 3-D structural model, 3-D facies model and 3-D petrophysical properties models are set up, spatial distribution characteristics of sedimentary facies and petrophysical properties is reappeared. On the basis of reservoir architecture analysis and performance production data, remaining oil distribution patterns controlled by different hierarchy architecture units, stacked channel, single channel and inner architecture of point bar, are summarized, which will help to guide the additional development of oil fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Qinghai-Tibet Plateau lies in the place of the continent-continent collision between Indian and Eurasian plates. Because of their interaction the shallow and deep structures are very complicated. The force system forming the tectonic patterns and driving tectonic movements is effected together by the deep part of the lithosphere and the asthenosphere. It is important to study the 3-D velocity structures, the spheres and layers structures, material properties and states of the lithosphere and the asthenosphere for getting knowledge of their formation and evolution, dynamic process, layers coupling and exchange of material and energy. Based on the Rayleigh wave dispersion theory, we study the 3-D velocity structures, the depths of interfaces and thicknesses of different layers, including the crust, the lithosphere and the asthenosphere, the lithosphere-asthenosphere system in the Qinghai-Tibet Plateau and its adjacent areas. The following tasks include: (1)The digital seismic records of 221 seismic events have been collected, whose magnitudes are larger than 5.0 over the Qinghai-Tibet Plateau and its adjacent areas. These records come from 31 digital seismic stations of GSN , CDSN、NCDSN and part of Indian stations. After making instrument response calibration and filtering, group velocities of fundamental mode of Rayleigh waves are measured using the frequency-time analysis (FTAN) to get the observed dispersions. Furthermore, we strike cluster average for those similar ray paths. Finally, 819 dispersion curves (8-150s) are ready for dispersion inversion. (2)From these dispersion curves, pure dispersion data in 2°×2° cells of the areas (18°N-42°N, 70°E-106°E) are calculated by using function expansion method, proposed by Yanovskaya. The average initial model has been constructed by taking account of global AK135 model along with geodetic, geological, geophysical, receiving function and wide-angle reflection data. Then, initial S-wave velocity structures of the crust and upper mantle in the research areas have been obtained by using linear inversion (SVD) method. (3)Taking the results of the linear inversion as the initial model, we simultaneously invert the S wave velocities and thicknesses by using non-linear inversion (improved Simulated Annealing algorithm). Moreover, during the temperature dropping the variable-scale models are used. Comparing with the linear results, the spheres and layers by the non-linear inversion can be recognized better from the velocity value and offset. (4)The Moho discontinuity and top interface of the asthenosphere are recognized from the velocity value and offset of the layers. The thicknesses of the crust, lithosphere and asthenosphere are gained. These thicknesses are helpful to studying the structural differentia between the Qinghai-Tibet Plateau and its adjacent areas and among geologic units of the plateau. The results of the inversion will provide deep geophysical evidences for studying deep dynamical mechanism and exploring metal mineral resource and oil and gas resources. The following conclusions are reached by the distributions of the S wave velocities and thicknesses of the crust, lithosphere and asthenosphere, combining with previous researches. (1)The crust is very thick in the Qinghai-Tibet Plateau, varying from 60 km to 80 km. The lithospheric thickness in the Qinghai-Tibet Plateau is thinner (130-160 km) than its adjacent areas. Its asthenosphere is relatively thicker, varies from 150 km to 230 km, and the thickest area lies in the western Qiangtang. India located in south of Main Boundary thrust has a thinner crust (32-38 km), a thicker lithosphere of about 190 km and a rather thin asthenosphere of only 60 km. Sichuan and Tarim basins have the crust thickness less than 50km. Their lithospheres are thicker than the Qinghai-Tibet Plateau, and their asthenospheres are thinner. (2)The S-wave velocity variation pattern in the lithosphere-asthenosphere system has band-belted distribution along east-westward. These variations correlate with geology structures sketched by sutures and major faults. These sutures include Main Boundary thrust (MBT), Yarlung-Zangbo River suture (YZS), Bangong Lake-Nujiang suture (BNS), Jinshajiang suture (JSJS), Kunlun edge suture (KL). In the velocity maps of the upper and middle crust, these sutures can be sketched. In velocity maps of 250-300 km depth, MBT, BNS and JSJS can be sketched. In maps of the crustal thickness, the lithospheric thickness and the asthenospheric thickness, these sutures can be still sketched. In particular, MBT can be obviously resolved in these velocity maps and thickness maps. (3)Since the collision between India and Eurasian plate, the “loss” of surface material arising from crustal shortening is caused not only by crustal thickening but also by lateral extrusion material. The source of lateral extrusion lies in the Qiangtang block. These materials extrude along the JSJS and BNS with both rotation and dispersion in Daguaiwan. Finally, it extends toward southeast direction. (4)There is the crust-mantle transition zone of no distinct velocity jump in the lithosphere beneath the Qiangtang Terrane. It has thinner lithosphere and developed thicker asthenosphere. It implies that the crust-mantle transition zone of partial melting is connected with the developed asthenosphere. The underplating of asthenosphere may thin the lithosphere. This buoyancy might be the main mechanism and deep dynamics of the uplift of the Qinghai-Tibet hinterland. At the same time, the transport of hot material with low velocity intrudes into the upper mantle and the lower crust along cracks and faults forming the crust-mantle transition zone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil-rock mixture (S-RM) refers to one extremely uneven loose rock and soil materials system with certain stone content. Its formation has started since Quaternary and it is composed of block stone, fine grained soil and pore with certain project scale and high strength. S-RM has extensive distribution in nature, especially in southwest China where the geotectonic background is complicated, the fracture activity is developed and the geomorphological characteristics of high mountain and steep gorge area are protuberant. This kind of complicated geologic body has developed wider in these areas. S-RM has obvious difference with the general soil or rock (rock mass) in physical and mechanical properties because its two components-“soil” and “rock-block” has extreme differences in physical and mechanical properties. The proposition of S-RM and its deep research are needed in the modern engineering construction. It is also the necessity in the modern development of rock and soil mechanics. The dissertation starts from the meso-structural characteristics of soil-rock and takes a systematic research on its meso-structural mechanics, deformation and failure mechanism and the stability of S-RM slope. In summary, it achieves the following innovative results and conclusions. There are various views on the conception of S-RM and its classification system. Based on the large number of field tests, the dissertation makes the conception and classification of S-RM more systematic. It systematically proposed the conception of meso-structural mechanics of S-RM. Thus the dissertation has laid a foundation for its deep study. With the fast development of the computer technology and digital image processing theory, digital image processing technology has been successfully applied in many fields and provided reliable technology support for the quantitative description of the structural characteristics of S-RM. Based on the digital image processing technology, the dissertation systematically proposes and developed the quantitative analysis method and quantitative index for the meso-structure of S-RM. The results indicate that the meso-structure such as its internal soil-rock granularity composition, the soil-rock shape and the orientability has obvious self-organization in the macro statistical level. The dissertation makes a systematic research on the physical mechanical properties, deformation and failure mechanism of S-RM based on large field test. It proposes the field test for the underwater S-RM and deduces the 3D data analysis method of in-situ horizontal push-shear test. The result indicates that S-RM has significant phenomenon of shear dilatancy in the shearing process, and its dilatancy will be more obvious with the increased proportion of rock or the decreased confining pressure. The proportion of rock has great effect on the strength of S-RM and rock-block, especially the spatial position of particles with comparatively big size has great effect on the shape and spatial position of the sample shear zone. The dissertation makes some improvements in the single ring infiltration test equipment and its application on the permeability of S-RM. The results indicate that the increasing of rock-block would make it more difficult for the soil to fill in the vacuity between the rock-block and the proportion would increase which would result in the increased permeability coefficient. The dissertation builds the real meso-structural model of S-RM based on the digital image processing technology. By using geometric reconstruction technology, it transfers the structural mode represented by Binary image into CAD format, which makes it possible to introduce the present finite element analysis software to take research on numerical experimental investigation. It systematically realizes leaping research from the image,geometric mode, to meso-structural mechanics numerical experiment. By using this method, the dissertation takes large scale numerical direct-shear test on the section of S-RM. From the mesoscopic perspective, it reveals three extended modes about the shear failure plane of S-RM. Based on the real meso-structural model and by using the numerical simulation test, the character and mechanics of seepage failure of S-RM are studied. At the same time, it builds the real structural mode of the slope based on the analysis about the slope crosssection of S-RM. By using the strength reduction method, it takes the research on the stability of S-RM and gets great achievements. The three dimensional geometric reconstruction technology of rock block is proposed, which provides technical support for the reconstruction of the 3D meso-structural model of S-RM. For the first time, the dissertation builds the stochastic structure model of two-dimensional and three-dimensional polygons or polyhedron based on the stochastic simulation technique of monte carlo method. It breaks the traditional research which restricted to the random generation method of regular polygon and develops the relevant software system (R-SRM2D/3D) which has great effect on meso-structural mechanics of S-RM. Based on the R-SRM software system which randomly generates the meso-structural mode of S-RM according to the different meso-structural characteristics, the dissertation takes a series of research on numerical test of dual axis and real three-axis, systematically analyses the meso destroy system, the effects of meso-structural characteristics such as on the stone content, size composition and block directionality on the macro mechanical behavior and macro-permeability. Then it proposes the expression of the upper and lower limit for the macro-permeability coefficient of the inhomogeneous geomaterials, such as S-RM. By using the strength reduction FEM, the dissertation takes the research on the stability of the slope structural mode of the randomly formed S-RM. The results indicate that generally, the stability coefficient of S-RM slope increases with the increasing of stone content; on the condition of the same stone content, the stability coefficient of slope will be different with different size composition and the space position of large block at the internal slop has great effect on the stability. It suggests that meso-structural characteristics, especially the space position of large block should be considered when analyzing the stability of this kind of slope and strengthening design. Taking Xiazanri S-RM slope as an example, the dissertation proposes the fine modeling of complicated geologic body based on reverse engineering and the generation method of FLAC3D mode. It resolves the bottleneck problem about building the fine structural mode of three-dimensional geological body. By using FLAC3D, the dissertation takes research on the seepage field and the displacement field of Xiazanri S-RM slope in the process of reservoir water level rising and decreasing. By using strength reduction method, it analyses the three-dimension stability in the process of reservoir water level rising and decreasing. The results indicate that the slope stability firstly show downward trend in the process of reservoir water level rising and then rebound to increase; the sudden drawdown of reservoir water level has great effect on the slope stability and this effect will increase with the sudden drawdown amplitude rising. Based on the result of the rock block size analysis of S-RM, and using R-SRM2D the stochastic structure model of Xiazanri S-RM slope is built. By using strength reduction method, the stability of the stochastic structure model is analysis, the results shows that the stability factor increases significantly after considering the block.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Impedance inversion is very important in seismic technology. It is based on seismic profile. Good inversion result is derived from high quality seismic profile, which is formed using high resolution imaging resolution. High-resolution process demands that signal/noise ratio is high. It is very important for seismic inversion to improve signal/noise ratio. the main idea is that the physical parameter (wave impedance), which describes the stratigraphy directly, is achieved from seismic data expressing structural style indirectly. The solution of impedance inversion technology, which is based on convolution model, is arbitrary. It is a good way to apply the priori information as the restricted condition in inversion. An updated impedance inversion technology is presented which overcome the flaw of traditional model and highlight the influence of structure. Considering impedance inversion restricted by sedimentary model, layer filling style and congruence relation, the impedance model is built. So the impedance inversion restricted by geological rule could be realized. there are some innovations in this dissertation: 1. The best migration aperture is achieved from the included angle of time surface of diffracted wave and reflected wave. Restricted by structural model, the dip of time surface of reflected wave and diffracted wave is given. 2. The conventional method of FXY forcasting noise is updated, and the signal/noise ratio is improved. 3. Considering the characteristic of probability distribution of seismic data and geological events fully, an object function is constructed using the theory of Bayes estimation as the criterion. The mathematics is used here to describe the content of practice theory. 4. Considering the influence of structure, the seismic profile is interpreted to build the model of structure. A series of structure model is built. So as the impedance model. The high frequency of inversion is controlled by the geological rule. 5. Conjugate gradient method is selected to improve resolving process for it fit the demands of geophysics, and the efficiency of algorithm is enhanced. As the geological information is used fully, the result of impedance inversion is reasonable and complex reservoir could be forecasted further perfectly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seepage control in karstic rock masses is one of the most important problems in domestic hydroelectric engineering and mining engineering as well as traffic engineering. At present permeability assessment and leakage analysis of multi-layer karstic rock masses are mainly qualitative, while seldom quantitative. Quantitative analyses of the permeability coefficient and seepage amount are conducted in this report, which will provide a theoretical basis for the study of seepage law and seepage control treatment of karstic rocks. Based on the field measurements in the horizontal grouting galleries of seepage control curtains on the left bank of the Shuibuya Hydropower Project on the Qingjiang river, a hydraulic model is established in this report, and the computation results will provide a scientific basis for optimization of grouting curtain engineering. Following issues are addressed in the report. (1) Based on the in-situ measurements of fissures and karstic cavities in grouting galleries, the characteristics of karstic rock mass is analyzed, and a stochastic structural model of karstic rock masses is set up, which will provide the basis for calculation of the permeability and leakage amount of karstic rock mass. (2) According to the distribution of the measured joints in the grouting galleries and the stochastic results obtained from the stochastic structural model of karstic rock mass between grouting galleries, a formula for computation of permeability tensor of fracturing system is set up, and a computation program is made with Visual Basic language. The computation results will be helpful for zoning of fissured rock masses and calculation of seepage amount as well as optimization of seepage control curtains. (3) Fractal theory is used to describe quantitatively the roughness of conduit walls of karstic systems and the sinuosity of karstic conduits. It is proposed that the roughness coefficient of kastic caves can be expressed by both fractal dimension Ds and Dr that represent respectively the extension sinuosity of karstic caves and the roughness of the conduit walls. The existing formula for calculating the seepage amount of karstic conduits is revised and programmed. The seepage amount of rock masses in the measured grouting galleries is estimated under the condition that no seepage control measures are taken before reservoir impoundment, and the results will be helpful for design and construction optimization of seepage curtains of the Shuibuya hydropower project. This report is one part of the subject "Karstic hydrogeology and the structural model and seepage hydraulics of karstic rock masses", a sub-program of "Study on seepage hydraulics of multi-layer karstic rock masses and its application in seepage control curtain engineering", which is financially supported by the Hubei Provincial key science and technology programme.