601 resultados para Magnetoelectric couplings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamics of biomolecules over various spatial and time scales are essential for biological functions such as molecular recognition, catalysis and signaling. However, reconstruction of biomolecular dynamics from experimental observables requires the determination of a conformational probability distribution. Unfortunately, these distributions cannot be fully constrained by the limited information from experiments, making the problem an ill-posed one in the terminology of Hadamard. The ill-posed nature of the problem comes from the fact that it has no unique solution. Multiple or even an infinite number of solutions may exist. To avoid the ill-posed nature, the problem needs to be regularized by making assumptions, which inevitably introduce biases into the result.

Here, I present two continuous probability density function approaches to solve an important inverse problem called the RDC trigonometric moment problem. By focusing on interdomain orientations we reduced the problem to determination of a distribution on the 3D rotational space from residual dipolar couplings (RDCs). We derived an analytical equation that relates alignment tensors of adjacent domains, which serves as the foundation of the two methods. In the first approach, the ill-posed nature of the problem was avoided by introducing a continuous distribution model, which enjoys a smoothness assumption. To find the optimal solution for the distribution, we also designed an efficient branch-and-bound algorithm that exploits the mathematical structure of the analytical solutions. The algorithm is guaranteed to find the distribution that best satisfies the analytical relationship. We observed good performance of the method when tested under various levels of experimental noise and when applied to two protein systems. The second approach avoids the use of any model by employing maximum entropy principles. This 'model-free' approach delivers the least biased result which presents our state of knowledge. In this approach, the solution is an exponential function of Lagrange multipliers. To determine the multipliers, a convex objective function is constructed. Consequently, the maximum entropy solution can be found easily by gradient descent methods. Both algorithms can be applied to biomolecular RDC data in general, including data from RNA and DNA molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis the critical dynamics of several magnetoelectric compounds at their phase transition were examined. Mostly measurements of the dielectric properties in the frequency range of below 1 Hz up to 5 GHz were employed to evaluate the critical exponents for both magnetic field and temperature-dependent measurements. Most of the materials that are part of this work show anomalous behavior, especially at very low temperatures where quantum fluctuations are of the order of or even dominate those induced thermally. This anomalous behavior manifests in different forms. In Dy2Ti2O7 we demonstrate the existence of electric dipoles on magnetic monopoles. Here the dynamics at the critical endpoint located at 0.36K and in a magnetic field of 1T parallel to the [111] direction are of special interest. At this critical endpoint the expected critical slowing down of the dynamics could not only not be observed but instead the opposite, critical speeding-up by several orders of magnitude, could be demonstrated. Furthermore, we show that the phase diagram of Dy2Ti2O7 in this field direction can be reproduced solely from the dynamical properties, for example the resonance frequency of the observed relaxation that is connected to the monopole movement. Away from this point of the phase diagram the dynamics are slowing-down with reduction of temperature as one would expect. Additional measurements on Y2Ti2O7, a structurally identical but non-magnetic material, show only slowing down with reduction of temperature and no additional features. A possible explanation for the observed critical speeding-up is a coherent movement of magnetic monopoles close to the critical field that increases the resonance frequency by reducing the damping of the process. LiCuVO4 on the other hand behaves normally at its phase transition as long as the temperature is higher than 0.4 K. In this temperature regime the dynamics show critical slowing-down analogous to classical ferroelectric materials. This analogy extends also towards higher frequencies where the permittivity displays a ‘dispersion’ minimum that is temperature-dependent but of the order of 2 GHz. Below 0.4K the observed behavior changes drastically. Here we found no longer relaxational behavior but instead an excitation with very low energy. This low energy excitation was predicted by theory and is caused by nearly gapless soliton excitations within the 1D Cu2+ chains of LiCuVO4. Finally, in TbMnO3 the dynamics of the phase transition into the multiferroic phase was observed at roughly 27 K, a much higher temperature compared to the other materials. Here the expected critical slowing-down was observed, even though in low-frequency measurements this transition into the ferroelectric phase is overshadowed by the so-called c-axis relaxation. Therefore, only frequencies above 1MHz could be used to determine the critical exponents for both temperatureand magnetic-field-dependent measurements. This was done for both the peak frequency as well as the relaxation strength. In TbMnO3 an electromagnetic soft-mode with small optical weight causes the observed fluctuations, similar to the case of multiferroic MnWO4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, the magnetic properties of four transition-metal oxides are presented. Their multiferroic and magnetoelectric phases have been investigated by means of different neutron scattering techniques. The materials TbMnO3 and MnWO4 belong to the group of spin-induced multiferroics. Their ferroelectric polarization can be explained by the inverse DzyaloshinskiiMoriya interaction. Another common feature of both materials is the presence of subsequent magnetic transitions from a spin-density wave to a spin spiral. The features of the phase transitions have been studied in both materials and it could be shown that diffuse magnetic scattering from the spin spiral is present even in the ordered spin-density wave phase. The excitation spectrum in the multiferroic phase of TbMnO3 was investigated in detail and a comprehensive dataset was obtained using time-of-flight spectroscopy. A spin-wave model could be obtained which can quantitatively describe the full dispersion. Furthermore, the polarization of the zone-center excitations could be derived which fit well to data from inelastic neutron spectroscopy and infrared spectroscopy. With the combination of spherical neutron polarimetry and a poling of the sample by an electric field, it was possible to observe the chiral magnetic component of the magnetic excitations in TbMnO3 and MnWO4. The spin-wave model for TbMnO3 obtained in this thesis is able to correctly describe the dispersion of this component. The double tungstate NaFe(WO4)2 is isostructural to the multiferroic MnWO4 and develops a complex magnetic phase diagram. By the use of neutron diffraction techniques, the zero-field structure and high-field structures in magnetic field applied along the b-axis could be determined. The data reveal a direct transition into an incommensurate spin-spiral structure. The value of the incommensurability is driven by anharmonic modulations and shows strong hysteresis effects. The static and dynamic properties in the magnetoelectric spin-glass phase of Ni0.42Mn0.58TiO3 were studied in detail. The spin-glass phase is composed of short-ranged MnTiO3 and NiTiO3-type order. The antiferromagnetic domains could be controlled by crossed magnetic and electric fields, which was visualized using spherical neutron polarimetry. A comprehensive dataset of the magnetic excitations in the spin-glass phase was collected. The dataset revealed correlations in the hexagonal plane which are only weakly coupled along the c-axis. The excitation spectra could be simulated by taking into account the MnTiO3-type order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present the measurement of a rare Standard Model processes, pp →W±γγ for the leptonic decays of the W±. The measurement is made with 19.4 fb−1 of 8 TeV data collected in 2012 by the CMS experiment. The measured cross section is consistent with the Standard Model prediction and has a significance of 2.9σ. Limits are placed on dimension-8 Effective Field Theories of anomalous Quartic Gauge Couplings. The analysis has particularly sensitivity to the fT,0 coupling and a 95% confidence limit is placed at −35.9 < fT,0/Λ4< 36.7 TeV−4. Studies of the pp →Zγγ process are also presented. The Zγγ signal is in strict agreement with the Standard Model and has a significance of 5.9σ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiferroic materials displaying coupled ferroelectric and ferromagnetic order parameters could provide a means for data storage whereby bits could be written electrically and read magnetically, or vice versa. Thin films of Aurivillius phase Bi6Ti2.8Fe1.52Mn0.68O18, previously prepared by a chemical solution deposition (CSD) technique, are multiferroics demonstrating magnetoelectric coupling at room temperature. Here, we demonstrate the growth of a similar composition, Bi6Ti2.99Fe1.46Mn0.55O18, via the liquid injection chemical vapor deposition technique. High-resolution magnetic measurements reveal a considerably higher in-plane ferromagnetic signature than CSD grown films (MS = 24.25 emu/g (215 emu/cm3), MR = 9.916 emu/g (81.5 emu/cm3), HC = 170 Oe). A statistical analysis of the results from a thorough microstructural examination of the samples, allows us to conclude that the ferromagnetic signature can be attributed to the Aurivillius phase, with a confidence level of 99.95%. In addition, we report the direct piezoresponse force microscopy visualization of ferroelectric switching while going through a full in-plane magnetic field cycle, where increased volumes (8.6 to 14% compared with 4 to 7% for the CSD-grown films) of the film engage in magnetoelectric coupling and demonstrate both irreversible and reversible magnetoelectric domain switching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1,2,4,5-Tetrazines are six-membered heterocyclic compounds in which the four nitrogen atoms are displayed in a symmetric fashion. Their reactivity is quite different from other heterocyclic aromatic systems due to its unique electron-withdrawing character, comparable to tetra-nitrobenzene. 1 In particular, 1,2,4,5- tetrazines are known to take part in [4+2] inverse-Diels–Alder cycloaddition processes which efficiently lead to the construction of substituted pyridazine systems that are important in drug development and biomarker applications. 2 However, the electronic character of 1,2,4,5-tetrazines hampered the development of 3- ethynyl- and 3,6-diethynyl-1,2,4,5-tetrazine derivatives for molecular electronic applications, proved by the scarcity of examples found in the literature. 3 Herein, we describe the synthesis and characterization of two novel ethynyl-based 1,2,4,5-tetrazine derivatives. Synthesis of 3,6-(4-bromophenyl)-1,2,4,5-tetrazine precursor (1) was achieved in good yield by Pinner’s method, starting from 4-bromobenzonitrile. Despite its low solubility in common organic solvents, this precursor was found to react smoothly under typical Sonogashira coupling conditions to selectively afford the 3-ethynyl (2) and 3,6-diethynyl (3) protected derivatives (Figure 1). Reaction conditions were evaluated in order to provide the best yields and to promote selectivity of the mono- or disubstituted ethynyl derivatives. Finally, deprotection was achieved affording, in the case of compound 3, an unprecedented 3,6- diethynyl-1,2,4,5-tetrazine compound. Time-Dependent Density Functional Theory (TDDFT) calculations for both deprotected ethynyl derivatives were used to simulate electronic spectra. A deep knowledge of the relevant electronic transitions involved and quantitatively satisfactory results of the calculated electronic excitations in comparison with experimental data were obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the shape resonance spectra of phenol-water clusters, as obtained from elastic electron scattering calculations. Our results, along with virtual orbital analysis, indicate that the well-known indirect mechanism for hydrogen elimination in the gas phase is significantly impacted on by microsolvation, due to the competition between vibronic couplings on the solute and solvent molecules. This fact suggests how relevant the solvation effects could be for the electron-driven damage of biomolecules and the biomass delignification [E. M. de Oliveira et al., Phys. Rev. A 86, 020701(R) (2012)]. We also discuss microsolvation signatures in the differential cross sections that could help to identify the solvated complexes and access the composition of gaseous admixtures of these species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oscillator networks have been developed in order to perform specific tasks related to image processing. Here we analytically investigate the existence of synchronism in a pair of phase oscillators that are short-range dynamically coupled. Then, we use these analytical results to design a network able of detecting border of black-and-white figures. Each unit composing this network is a pair of such phase oscillators and is assigned to a pixel in the image. The couplings among the units forming the network are also dynamical. Border detection emerges from the network activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large parity-violating longitudinal single-spin asymmetries A(L)(e+) = 0.86(-0.14)(+0.30) and Ae(L)(e-) = 0.88(-0.71)(+0.12) are observed for inclusive high transverse momentum electrons and positrons in polarized p + p collisions at a center-of-mass energy of root s = 500 GeV with the PHENIX detector at RHIC. These e(+/-) come mainly from the decay of W(+/-) and Z(0) bosons, and their asymmetries directly demonstrate parity violation in the couplings of the W(+/-) to the light quarks. The observed electron and positron yields were used to estimate W(+/-) boson production cross sections for the e(+/-) channels of sigma(pp -> W(+)X) X BR(W(+) -> e(+) nu(e)) = 144.1 +/- 21.2(stat)(-10.3)(+3.4)(syst) +/- 21.6(norm) pb, and sigma(pp -> W(-)X) X BR(W(-) -> e(-) (nu) over bar (e)) = 3.17 +/- 12.1(stat)(-8.2)(+10.1)(syst) +/- 4.8(norm) pb.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the effect of an interaction between dark energy and dark matter upon the dynamics of galaxy clusters. This effect is computed through the Layser-Irvine equation, which describes how an astrophysical system reaches virial equilibrium and was modified to include the dark interactions. Using observational data from almost 100 purportedly relaxed galaxy clusters we put constraints on the strength of the couplings in the dark sector. We compare our results with those from other observations and find that a positive (in the sense of energy flow from dark energy to dark matter) nonvanishing interaction is consistent with the data within several standard deviations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that CPT-even aetherlike Lorentz-breaking actions, for the scalar and electromagnetic fields, are generated via their appropriate Lorentz-breaking coupling to spinor fields, in three, four, and five space-time dimensions. Besides, we also show that aetherlike terms for the spinor field can be generated as a consequence of the same couplings. We discuss the dispersion relations in the theories with aetherlike Lorentz-breaking terms and find the tree-level effective (Breit) potential for fermion scattering and the one-loop effective potential corresponding to the action of the scalar field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the influence of couplings among continuum states in collisions of weakly bound nuclei. For this purpose, we compare cross sections for complete fusion, breakup, and elastic scattering evaluated by continuum discretized coupled channel (CDCC) calculations, including and not including these couplings. In our study, we discuss this influence in terms of the polarization potentials that reproduces the elastic wave function of the coupled channel method in single channel calculations. We find that the inclusion of couplings among continuum states renders the real part of the polarization potential more repulsive, whereas it leads to weaker absorption to the breakup channel. We show that the noninclusion of continuum-continuum couplings in CDCC calculations may lead to qualitative and quantitative wrong conclusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the possibility that a new strong interaction is accessible to the Tevatron and the LHC. In an effective theory approach, we consider a scenario with a new color-octet interaction with strong couplings to the top quark, as well as the presence of a strongly coupled fourth generation which could be responsible for electroweak symmetry breaking. We apply several constraints, including the ones from flavor physics. We study the phenomenology of the resulting parameter space at the Tevatron, focusing on the forward-backward asymmetry in top pair production, as well as in the production of the fourth-generation quarks. We show that if the excess in the top production asymmetry is indeed the result of this new interaction, the Tevatron could see the first hints of the strongly coupled fourth-generation quarks. Finally, we show that the LHC with root s = 7 TeV and 1 fb(-1) integrated luminosity should observe the production of fourth-generation quarks at a level at least 1 order of magnitude above the QCD prediction for the production of these states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New data for the (6)He + (9)Be reaction at E(1ab) = 16.2 and 21.3 MeV have been taken and analyzed. The effect of the collective couplings to the excited states of the target has been studied by means of coupled-channels calculations, using a double-folding potential for the bare interaction between the colliding nuclei, supplemented with a phenomenological imaginary part of Woods-Saxon type. In addition, three- and four-body continuum-discretized coupled-channels calculations have been performed to investigate the effect of the projectile breakup on the elastic scattering. Both effects, the coupling to target and projectile excited states, are found to affect significantly the elastic scattering. The trivial local polarization potential extracted from the continuum-discretized coupled-channels calculations indicates that continuum couplings produce a repulsive real part and a long-range imaginary part in the projectile-target interaction.