981 resultados para MUTUAL INFORMATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: This study aimed to explore methods of assessing interactions between neuronal sources using MEG beamformers. However, beamformer methodology is based on the assumption of no linear long-term source interdependencies [VanVeen BD, vanDrongelen W, Yuchtman M, Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 1997;44:867-80; Robinson SE, Vrba J. Functional neuroimaging by synthetic aperture magnetometry (SAM). In: Recent advances in Biomagnetism. Sendai: Tohoku University Press; 1999. p. 302-5]. Although such long-term correlations are not efficient and should not be anticipated in a healthy brain [Friston KJ. The labile brain. I. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond B Biol Sci 2000;355:215-36], transient correlations seem to underlie functional cortical coordination [Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 1999;49-65; Rodriguez E, George N, Lachaux J, Martinerie J, Renault B, Varela F. Perception's shadow: long-distance synchronization of human brain activity. Nature 1999;397:430-3; Bressler SL, Kelso J. Cortical coordination dynamics and cognition. Trends Cogn Sci 2001;5:26-36]. Methods: Two periodic sources were simulated and the effects of transient source correlation on the spatial and temporal performance of the MEG beamformer were examined. Subsequently, the interdependencies of the reconstructed sources were investigated using coherence and phase synchronization analysis based on Mutual Information. Finally, two interacting nonlinear systems served as neuronal sources and their phase interdependencies were studied under realistic measurement conditions. Results: Both the spatial and the temporal beamformer source reconstructions were accurate as long as the transient source correlation did not exceed 30-40 percent of the duration of beamformer analysis. In addition, the interdependencies of periodic sources were preserved by the beamformer and phase synchronization of interacting nonlinear sources could be detected. Conclusions: MEG beamformer methods in conjunction with analysis of source interdependencies could provide accurate spatial and temporal descriptions of interactions between linear and nonlinear neuronal sources. Significance: The proposed methods can be used for the study of interactions between neuronal sources. © 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a mean field theory of code-division multiple access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sigmoidal tuning curve that maximizes the mutual information for a Poisson neuron, or population of Poisson neurons, is obtained. The optimal tuning curve is found to have a discrete structure that results in a quantization of the input signal. The number of quantization levels undergoes a hierarchy of phase transitions as the length of the coding window is varied. We postulate, using the mammalian auditory system as an example, that the presence of a subpopulation structure within a neural population is consistent with an optimal neural code.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. Relationship between the free energy in statistical-mechanics approach and the mutual information used in the information-theory literature is established within a general framework; Gallager and MacKay-Neal codes are studied as specific examples of LDPC codes. It is shown that basic properties of these codes known for particular channels, including their potential to saturate Shannon's bound, hold for general symmetric channels. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a family of attributed graph kernels based on mutual information measures, i.e., the Jensen-Tsallis (JT) q-differences (for q  ∈ [1,2]) between probability distributions over the graphs. To this end, we first assign a probability to each vertex of the graph through a continuous-time quantum walk (CTQW). We then adopt the tree-index approach [1] to strengthen the original vertex labels, and we show how the CTQW can induce a probability distribution over these strengthened labels. We show that our JT kernel (for q  = 1) overcomes the shortcoming of discarding non-isomorphic substructures arising in the R-convolution kernels. Moreover, we prove that the proposed JT kernels generalize the Jensen-Shannon graph kernel [2] (for q = 1) and the classical subtree kernel [3] (for q = 2), respectively. Experimental evaluations demonstrate the effectiveness and efficiency of the JT kernels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The real purpose of collecting big data is to identify causality in the hope that this will facilitate credible predictivity . But the search for causality can trap one into infinite regress, and thus one takes refuge in seeking associations between variables in data sets. Regrettably, the mere knowledge of associations does not enable predictivity. Associations need to be embedded within the framework of probability calculus to make coherent predictions. This is so because associations are a feature of probability models, and hence they do not exist outside the framework of a model. Measures of association, like correlation, regression, and mutual information merely refute a preconceived model. Estimated measures of associations do not lead to a probability model; a model is the product of pure thought. This paper discusses these and other fundamentals that are germane to seeking associations in particular, and machine learning in general. ACM Computing Classification System (1998): H.1.2, H.2.4., G.3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coding process is a fundamental aspect of cerebral functioning. The sensory stimuli transformation in neurophysiological responses has been a research theme in several areas of Neuroscience. One of the most used ways to measure a neural code e ciency is by the use of Information Theory measures, such as mutual information. Using these tools, recent studies show that in the auditory cortex both local eld potentials (LFPs) and action potential spiking times code information about sound stimuli. However, there are no studies applying Information Theory tools to investigate the e ciency of codes that use postsynaptics potentials (PSPs), alone and associated with LFP analysis. These signals are related in the sense that LFPs are partly created by joint action of several PSPs. The present dissertation reports information measures between PSP and LFP responses obtained in the primary auditory cortex of anaesthetized rats and auditory stimuli of distinct frequencies. Our results show that PSP responses hold information about sound stimuli in comparable levels and even greater than LFP responses. We have also found that PSPs and LFPs code sound information independently, since the joint analysis of these signals did neither show synergy nor redundancy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work addresses the problem of detecting human behavioural anomalies in crowded surveillance environments. We focus in particular on the problem of detecting subtle anomalies in a behaviourally heterogeneous surveillance scene. To reach this goal we implement a novel unsupervised context-aware process. We propose and evaluate a method of utilising social context and scene context to improve behaviour analysis. We find that in a crowded scene the application of Mutual Information based social context permits the ability to prevent self-justifying groups and propagate anomalies in a social network, granting a greater anomaly detection capability. Scene context uniformly improves the detection of anomalies in both datasets. The strength of our contextual features is demonstrated by the detection of subtly abnormal behaviours, which otherwise remain indistinguishable from normal behaviour.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the most challenging task underlying many hyperspectral imagery applications is the spectral unmixing, which decomposes a mixed pixel into a collection of reectance spectra, called endmember signatures, and their corresponding fractional abundances. Independent Component Analysis (ICA) have recently been proposed as a tool to unmix hyperspectral data. The basic goal of ICA is to nd a linear transformation to recover independent sources (abundance fractions) given only sensor observations that are unknown linear mixtures of the unobserved independent sources. In hyperspectral imagery the sum of abundance fractions associated to each pixel is constant due to physical constraints in the data acquisition process. Thus, sources cannot be independent. This paper address hyperspectral data source dependence and its impact on ICA performance. The study consider simulated and real data. In simulated scenarios hyperspectral observations are described by a generative model that takes into account the degradation mechanisms normally found in hyperspectral applications. We conclude that ICA does not unmix correctly all sources. This conclusion is based on the a study of the mutual information. Nevertheless, some sources might be well separated mainly if the number of sources is large and the signal-to-noise ratio (SNR) is high.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, information security is a very important topic. In particular, wireless networks are experiencing an ongoing widespread diffusion, also thanks the increasing number of Internet Of Things devices, which generate and transmit a lot of data: protecting wireless communications is of fundamental importance, possibly through an easy but secure method. Physical Layer Security is an umbrella of techniques that leverages the characteristic of the wireless channel to generate security for the transmission. In particular, the Physical Layer based-Key generation aims at allowing two users to generate a random symmetric keys in an autonomous way, hence without the aid of a trusted third entity. Physical Layer based-Key generation relies on observations of the wireless channel, from which harvesting entropy: however, an attacker might possesses a channel simulator, for example a Ray Tracing simulator, to replicate the channel between the legitimate users, in order to guess the secret key and break the security of the communication. This thesis work is focused on the possibility to carry out a so called Ray Tracing attack: the method utilized for the assessment consist of a set of channel measurements, in different channel conditions, that are then compared with the simulated channel from the ray tracing, to compute the mutual information between the measurements and simulations. Furthermore, it is also presented the possibility of using the Ray Tracing as a tool to evaluate the impact of channel parameters (e.g. the bandwidth or the directivity of the antenna) on the Physical Layer based-Key generation. The measurements have been carried out at the Barkhausen Institut gGmbH in Dresden (GE), in the framework of the existing cooperation agreement between BI and the Dept. of Electrical, Electronics and Information Engineering "G. Marconi" (DEI) at the University of Bologna.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We estimate and compare the performance of Portuguese-based mutual funds that invest in the domestic market and in the European market using unconditional and conditional models of performance evaluation. Besides applying both partial and full conditional models, we use European information variables, instead of the most common local ones, and consider stochastically detrended conditional variables in order to avoid spurious regressions. The results suggest that mutual fund managers are not able to outperform the market, presenting negative or neutral performance. The incorporation of conditioning information in performance evaluation models is supported by our findings, as it improves the explanatory power of the models and there is evidence of both time-varying betas and alphas related to the public information variables. It is also shown that the number of lags to be used in the stochastic detrending procedure is a critical choice, as it will impact the significance of the conditioning information. In addition, we observe a distance effect, since managers who invest locally seem to outperform those who invest in the European market. However, after controlling for public information, this effect is slightly reduced. Furthermore, the results suggest that survivorship bias has a small impact on performance estimates.