962 resultados para MULTIPLE-DOSE PHARMACOKINETICS
Resumo:
Defining the pharmacokinetics of drugs in overdose is complicated. Deliberate self-poisoning is generally impulsive and associated with poor accuracy in dose history. In addition, early blood samples are rarely collected to characterize the whole plasma-concentration time profile and the effect of decontamination on the pharmacokinetics is uncertain. The aim of this study was to explore a fully Bayesian methodology for population pharmacokinetic analysis of data that arose from deliberate self-poisoning with citalopram. Prior information on the pharmacokinetic parameters was elicited from 14 published studies on citalopram when taken in therapeutic doses. The data set included concentration-time data from 53 patients studied after 63 citalopram overdose events (dose range: 20-1700 mg). Activated charcoal was administered between 0.5 and 4 h after 17 overdose events. The clinical investigator graded the veracity of the patients' dosing history on a 5-point ordinal scale. Inclusion of informative priors stabilised the pharmacokinetic model and the population mean values could be estimated well. There were no indications of non-linear clearance after excessive doses. The final model included an estimated uncertainty of the dose amount which in a simulation study was shown to not affect the model's ability to characterise the effects of activated charcoal. The effect of activated charcoal on clearance and bioavailability was pronounced and resulted in a 72% increase and 22% decrease, respectively. These findings suggest charcoal administration is potentially beneficial after citalopram overdose. The methodology explored seems promising for exploring the dose-exposure relationship in the toxicological settings.
Resumo:
Purpose: PI-88 is a mixture of highly sulfated oligosaccharides that inhibits heparanase, an extracellular matrix endoglycosidase, and the binding of angiogenic growth factors to heparan sulfate. This agent showed potent inhibition of placental blood vessel angiogenesis as well as growth inhibition in multiple xenograft models, thus forming the basis for this study. Experimental Design: This study evaluated the toxicity and pharmacokinetics of PI-88 (80-315 mg) when administered s.c. daily for 4 consecutive days bimonthly (part 1) or weekly (part 2). Results: Forty-two patients [median age, 53 years (range, 19-78 years); median performance status, 1] with a range of advanced solid tumors received a total of 232 courses. The maximum tolerated dose was 250 mg/d. Dose-limiting toxicity consisted of thrombocytopenia and pulmonary embolism. Other toxicity was generally mild and included prolongation of the activated partial thromboplastin time and injection site echymosis. The pharmacokinetics were linear with dose. Intrapatient variability was low and interpatient variability was moderate. Both AUC and C-max correlated with the percent increase in activated partial thromboplastin time, showing that this pharmacodynamic end point can be used as a surrogate for drug exposure, No association between PI-88 administration and vascular endothelial growth factor or basic fibroblast growth factor levels was observed. One patient with melanoma had a partial response, which was maintained for >50 months, and 9 patients had stable disease for >= 6 months. Conclusion: The recommended dose of PI-88 administered for 4 consecutive days bimonthly or weekly is 250 mg/d. PI-88 was generally well tolerated. Evidence of efficacy in melanoma supports further evaluation of PI-88 in phase II trials.
Resumo:
The aim of this study was to ascertain the most suitable dosing schedule for gentamicin in patients receiving hemodialysis. We developed a model to describe the concentrationtime course of gentamicin in patients receiving hemodialysis. Using the model, an optimal dosing schedule was evaluated. Various dosing regimens were compared in their ability to achieve maximum concentration (C-max, >= 8 mg/L) and area under the concentration time-curve (AUC >= 70 mg(.)h/L and <= 120 mg(.)h/L per 24 hours). The model was evaluated by comparing model predictions against real data collected retrospectively. Simulations from the model confirmed the benefits of predialysis dosing. The mean optimal dose was 230 mg administered immediately before dialysis. The model was found to have good predictive performance when simulated data were compared to data observed in real patients. In summary, a model was developed that describes gentamicin pharmacokinetics in patients receiving hemodialysis. Predialysis dosing provided a superior pharmacokinetic profile than did postdialysis dosing.
Resumo:
Systemic inflammation is known to affect drug disposition in the liver. This study sought to relate and quantitate changes in hepatic pharmacokinetics of propranolol with changes in hepatic architecture and physiology in adjuvant-treated rats. Transmission electron microscopy was used to assess morphological changes in mitochondria and lysosomes of adjuvant-treated rat livers. The disposition of propranolol was assessed in the perfused rat liver using the multiple indicator dilution technique. Hepatic extraction and mean transit time were determined from outflow-concentration profiles using a nonparametric method. Kinetic parameters were derived from a two-phase physiologically based organ pharmacokinetic model. Possible relationships were then explored between the changes in hepatic drug disposition and cytochrome P-450 activity and iron concentration. Adjuvant treatment induced the appearance of mitochondrial inclusions/tubularization and irregularly shaped lysosomes in rat livers. Livers from adjuvant-treated rats had (relative to normal) significantly higher alpha(1)-acid glycoprotein (orosomucoid) and iron tissue concentrations but lower cytochrome P-450 content. The hepatic extraction, metabolism, and ion trapping of propranolol were significantly impaired in adjuvant-treated rats and could be correlated with altered iron store and cytochrome P-450 activity. It is concluded that adjuvant-induced systemic inflammation alters hepatocellular morphology and biochemistry and consequently influences hepatic disposition of propranolol.
Resumo:
Human melanoma susceptibility is often characterized by germ-line inactivating CDKN2A (INK4A/ARF) mutations, or mutations that activate CDK4 by preventing its binding to and inhibition by INK4A. We have previously shown that a single neonatal UV radiation (UVR) dose delivered to mice that carry melanocyte-specific activation of Hras (TPras) increases melanoma penetrance from 0% to 57%. Here, we report that activated Cdk4 cooperates with activated Hras to enhance susceptibility to melanoma in mice. Whereas UVR treatment failed to induce melanomas in Cdk4(R24C/R24C) mice, it greatly increased the penetrance and decreased the age of onset of melanoma development in Cdk4(R24C/R24C)/TPras animals compared with TPras alone. This increased penetrance was dependent on the threshold of Cdk4 activation as Cdk4(R24C/+)/TPras animals did not show an increase in UVR-induced melanoma penetrance compared with TPras alone. In addition, Cdk4(R24C/R24C)/TPras mice invariably developed multiple lesions, which occurred rarely in TPras mice. These results indicate that germ-line defects abrogating the pRb pathway may enhance UVR-induced melanoma. TPras and Cdk4(R24C/R24C)/TPras tumors were comparable histopathologically but the latter were larger and more aggressive and cultured cells derived from such melanomas were also larger and had higher levels of nuclear atypia. Moreover, the melanomas in Cdk4(R24C/R24C)/TPras mice, but not in TPras mice, readily metastasized to regional lymph nodes. Thus, it seems that in the mouse, Hras activation initiates UVR-induced melanoma development whereas the cell cycle defect introduced by mutant Cdk4 contributes to tumor progression, producing more aggressive, metastatic tumors.
Resumo:
The pharmacokinetics of primaquine have been well defined in male volunteers, but there is little data on the disposition of the drug in women. We compared the kinetics of primaquine in nine male and nine female healthy Australian volunteers after the administration of a single oral dose (30 mg base) of primaquine. No statistical differences were observed in the following kinetic parameters of primaquine between men and women, respectively: maximum plasma concentration (93 +/- 26 and 115 +/- 38 ng/mL; 95% confidence interval [CI] of the mean difference: -55 to 10 ng/mL; P = 0.16), area under the curve (1.1 +/- 0.5 and 1.2 +/- 0.4 mu g.h/mL; 95% CI: -0.6 to 0.3 mu g.h/mL; P = 0.54), and clearance (0.34 +/- 0.12 and 0.39 +/- 0.14 L/h/kg; 95% CI: -0.17 to 0.08 L/h/kg; P = 0.46). The clinical relevance of such findings would suggest that sex does not have to be taken into account as a factor when prescribing primaquine for radical cure or terminal prophylaxis of Plasmodium vivax malaria.
Resumo:
Objectives: The aim of the study was to characterise the population pharmacokinetics (popPK) properties of itraconazole (ITRA) and its active metabolite hydroxy-ITRA in a representative paediatric population of cystic fibrosis (CF) and bone marrow transplant (BMT) patients. The goals were to determine the relative bioavailability between the two oral formulations, and to explore improved dosage regimens in these patients. Methods: All paediatric patients with CF taking oral ITRA for the treatment of allergic bronchopulmonary aspergillosis and patients undergoing BMT who were taking ITRA for prophylaxis of any fungal infection were eligible for the study. A minimum of two blood samples were drawn after the capsules and also after switching to oral solution, or vice versa. ITRA and hydroxy-ITRA plasma concentrations were measured by HPLC[1]. A nonlinear mixed-effect modelling approach (NONMEM 5.1.1) was used to describe the PK of ITRA and hydroxy-ITRA simultaneously. Simulations were used to assess dosing strategies in these patients. Results: Forty-nine patients (29CF, 20 BMT) were recruited to the study who provided 227 blood samples for the population analysis. A 1-compartment model with 1st order absorption and elimination best described ITRA kinetics, with 1st order conversion to hydroxy-ITRA. For ITRA, the apparent clearance (ClItra/F) and volume of distribution (Vitra/F) was 35.5L/h and 672L, respectively; the absorption rate constant for the capsule formulation was 0.0901 h-1 and for the oral solution formulation it was 0.959 h-1. The capsule comparative bioavailability (vs. solution) was 0.55. For hydroxy-ITRA, the apparent volume of distribution and clearance were 10.6 L and 5.28 L/h, respectively. Of several screened covariates only allometrically scaled total body weight significantly improved the fit to the data. No difference between the two populations was found. Conclusion: The developed popPK model adequately described the pharmacokinetics of ITRA and hydroxy-ITRA in paediatric patients with CF and patients undergoing BMT. High inter-patient variability confirmed previous data in CF[2], leukaemia and BMT[3] patients. From the population model, simulations showed the standard dose (5 mg/kg/day) needs to be doubled for the solution formulation and even 4 times more given of the capsules to achieve an adequate target therapeutic trough plasma concentration of 0.5 mg/L[4] in these patients.
Resumo:
Orexins A and B (ORA and ORB) are neuropeptide hormones found throughout the central nervous system and periphery. They are required for a host of physiological processes including mitogen-activated protein kinase (MAPK) regulation, steroidogenesis, appetite control and energy regulation. While some signalling mechanisms have been proposed for individual recombinant orexin receptors in generic mammalian cell types, it is clear that the peripheral effects of orexin are spatially and temporally complex. This study dissects the different G-protein signalling and MAPK pathways activated in a pluripotent human adrenal H295R cell line capable of all the physiological steps involved in steroidogenesis. Both extracellular receptor kinase 1/2 (ERK1/2) and p38 were phosphorylated rapidly with a subsequent decline, in a time- and dose-dependent manner, in response to both ORA and ORB. Conversely, there was little or no direct activation of the ERK5 or JNK pathway. Analysis using signalling and MAPK inhibitors as well as receptor-specific antagonists determined the precise mediators of the orexin response in these cells. Both ERK1/2 and p38 activation were predominantly Gq- and to a lesser extent Gs-mediated; p38 activation even had a small Gi-component. Effects were broadly comparable for both orexin sub-types ORA and ORB and although most of the effects were transmitted through the orexin receptor-1 subtype, we did observe a role for orexin receptor-2-mediated activation of both ERK1/2 and p38. Cortisol secretion also differed in response to ORA and ORB. These data suggest multiple roles for orexin-mediated MAPK activation in an adrenal cell-line, this complexity may help to explain the diverse biological actions of orexins with wide-ranging consequences for our understanding of the mechanisms initiated by these steroidogenic molecules.
Resumo:
BACKGROUND: In the light of sub-optimal uptake of the measles, mumps, and rubella (MMR) vaccination, we investigated the factors that influence the intentions of mothers to vaccinate. METHOD: A cross-sectional survey of 300 mothers in Birmingham with children approaching a routine MMR vaccination was conducted using a postal questionnaire to measure: intention to vaccinate, psychological variables, knowledge of the vaccine, and socioeconomic status. The vaccination status of the children was obtained from South Birmingham Child Health Surveillance Unit. RESULTS: The response rate was 59%. Fewer mothers approaching the second MMR vaccination (Group 2) intended to take their children for this vaccination than Group 1 (mothers approaching the first MMR vaccination) (Mann-Whitney U = 2180, P < 0.0001). Group 2 expressed more negative beliefs about the outcome of having the MMR vaccine ('vaccine outcome beliefs') (Mann-Whitney U = 2155, P < 0.0001), were more likely to believe it was 'unsafe' (chi 2 = 9.114, P = 0.004) and that it rarely protected (chi 2 = 6.882, P = 0.014) than Group 1. The commonest side-effect cited was general malaise, but 29.8% cited autism. The most trusted source of information was the general practitioner but the most common source of information on side-effects was television (34.6%). Multiple linear regression revealed that, in Group 1, only 'vaccine outcome beliefs' significantly predicted intention (77.1% of the variance). In Group 2 'vaccine outcome beliefs', attitude to the MMR vaccine, and prior MMR status all predicted intention (93% of the variance). CONCLUSION: A major reason for the low uptake of the MMR vaccination is that it is not perceived to be important for children's health, particularly the second dose. Health education from GPs is likely to have a considerable impact.
Resumo:
m-Azidopyrimethamine ethanesulphonate salt (MZPES) is a new potent dihydrofolate reductase inhibitor designed to be both lipophilic and rapidly biodegradable. The drug is active against some methotrexate-refractory cell lines and against a broad spectrum of malignant cells in murine models. The pharmacokinetics of the drug were evaluated in the mouse, rat and man. A specific analytical method was developed to allow determination of MZP (the free base of MZPES) and its putative metabolite m-amino-pyrimethamine (MAP) in plasma, urine, faeces and tissues. Analytical methodology involved solvent extraction followed by reversed-phase ion-pair high pressure liquid chromatography. Mice were dosed at 10 and 20 mg/kg IP and 10 mg/kg PO. Absorption was rapid from both sites with a mean plasma elimination half-life of 4 hours. Oral bio-availability, relative to intraperitoneal injection, exceeded 95% in the mouse. MZP attained concentrations in mouse tissues 4 to 14 fold greater than those found in plasma and penetrated the blood-brain barrier effectively. Following intraperitoneal administration of MZP to the rat, the recovery of MZP and MAP in urine and faeces was 14% during 72 hours. MZPES was formulated for a phase I clinical evaluation as a 1% w/v aqueous solution and was administered by IV infusion in 5% dextrose over 1 hour. The drug obeyed 2-compartment kinetics with a central compartment volume of 27 litres and a volume of distribution of 118 litres. Plasma distribution and elimination half-lives were 0.27 and 34 hours respectively and plasma clearance was 7.5 L/hr. MZP was removed from plasma more rapidly than the prototypic lipophilic dihydrofolate reductase inhibitor metoprine (half-life 216 hours). The pharmacokinetics of MZPES showed no dose-dependency over the dose-range studied (27 to 460 mg/m2). The dose-limiting toxicity was nausea and vomiting. The short half-life of the drug should allow easy assessment of the optimum dose and schedule of administration.
Resumo:
Combinations of two or more oral agents with different mechanisms of action are often used for the management of hyperglycaemia in type 2 diabetes. While these combinations have customarily been taken as separate tablets, several fixed-dose single tablet combinations are now available. These are based on bioequivalence with the separate tablets, giving similar efficacy to the separate tablets and necessitating the same cautions and contraindications that apply to each active component. Fixed-dose combinations can offer convenience, reduce the pill burden and simplify administration regimens for the patient. They increase patient adherence compared with equivalent combinations of separate tablets, and this is associated with some improvements in glycaemic control. Presently available antidiabetic fixed-dose combinations include metformin combined with a sulphonylurea, thiazolidinedione, dipeptidylpeptidase-4 inhibitor or meglitinide as well as thiazolidinedione-sulphonylurea combinations, each at a range of dosage strengths to facilitate titration. Anticipated future expansion of multiple drug regimens for diabetes management is likely to increase the use of fixed-dose single tablet combinations. © 2009 Blackwell Publishing Ltd.
Resumo:
The management of hypertension, dyslipidaemia and hyperglycaemia often requires multiple medications that combine two or more agents with different modes of action to give additive efficacy. In some situations lower doses of two agents with different modes of action can achieve greater efficacy than a high dose of one agent. This is achieved by addressing different pathophysiological features of the disease, whilst at the same time producing fewer side effects than a high dose of one agent. Several examples of this have been described for combinations of blood glucose-lowering therapies in type 2 diabetes. However, the pill burden associated with multiple medications can reduce patient adherence and compromise the potential value of the treatments. To reduce the number of daily doses, single-tablet (‘fixed-dose’) combinations have been introduced to offer greater convenience. There are several ant-diabetic FDCs, mostly combining metformin with another type of glucose-lowering agent. The UK has been less enthusiastic about FDCs than many other parts of the world, and does not have most of these combinations available. One of the concerns expressed about FDCs is a reduced flexibility to select desired doses of the two agents for dose titration. However, in practise the variety of dosage strengths for most FDCs matches the dosages available as separate tablets. Another concern has been the preference to add drugs one at a time to be able to attribute any adverse effects. In most cases the FDC is used when a second drug has been added to a monotherapy that is already a component of the FDC, so it is only the same as adding one agent but without increasing the pill burden.
Resumo:
The objective of the study was to define common reasons for non-adherence (NA) to highly active antiretroviral therapy (HAART) and the number of reasons reported by non-adherent individuals. A confidential questionnaire was administered to HIV-seropositive patients taking proteinase inhibitor based HAART. Median self-reported adherence was 95% (n = 178, range = 60-100%). The most frequent reasons for at least 'sometimes' missing a dose were eating a meal at the wrong time (38.2%), oversleeping (36.3%), forgetting (35.0%) and being in a social situation (30.5%). The mean number of reasons occurring at least 'sometimes' was 3.2; 20% of patients gave six or more reasons; those reporting the lowest adherence reported a significantly greater numbers of reasons (ρ = - 0.59; p < 0.001). Three factors were derived from the data by principal component analysis reflecting 'negative experiences of HAART', 'having a low priority for taking medication' and 'unintentionally missing doses', accounting for 53.8% of the variance. On multivariate analysis only the latter two factors were significantly related to NA (odds ratios 0.845 and 0.849, respectively). There was a wide spectrum of reasons for NA in our population. The number of reasons in an individual increased as adherence became less. A variety of modalities individualized for each patient are required to support patients with the lowest adherence.
Resumo:
Purpose: The aims of this study were to develop an algorithm to accurately quantify Vigabatrin (VGB)-induced central visual field loss and to investigate the relationship between visual field loss and maximum daily dose, cumulative dose and duration of dose. Methods: The sample comprised 31 patients (mean age 37.9 years; SD 14.4 years) diagnosed with epilepsy and exposed to VGB. Each participant underwent standard automated static visual field examination of the central visual field. Central visual field loss was determined using continuous scales quantifying severity in terms of area and depth of defect and additionally by symmetry of defect between the two eyes. A simultaneous multiple regression model was used to explore the relationship between these visual field parameters and the drug predictor variables. Results: The regression model indicated that maximum VGB dose was the only factor to be significantly correlated with individual eye severity (right eye: p = 0.020; left eye: p = 0.012) and symmetry of visual field defect (p = 0.024). Conclusions: Maximum daily dose was the single most reliable indicator of those patients likely to exhibit visual field defects due to VGB. These findings suggest that high maximum dose is more likely to result in visual field defects than high cumulative doses or those of long duration.
Resumo:
Objective: To describe the effect of age and body size on enantiomer selective pharmacokinetic (PK) of intravenous ketorolac in children using a microanalytical assay. Methods: Blood samples were obtained at 0, 15 and 30 min and at 1, 2, 4, 6, 8 and 12 h after a weight-dependent dose of ketorolac. Enantiomer concentration was measured using a liquid chromatography tandem mass spectrometry method. Non-linear mixed-effect modelling was used to assess PK parameters. Key findings: Data from 11 children (1.7–15.6 years, weight 10.7–67.4 kg) were best described by a two-compartment model for R(+), S(−) and racemic ketorolac. Only weight (WT) significantly improved the goodness of fit. The final population models were CL = 1.5 × (WT/46)0.75, V1 = 8.2 × (WT/46), Q = 3.4 × (WT/46)0.75, V2 = 7.9 × (WT/46), CL = 2.98 × (WT/46), V1 = 13.2 × (WT/46), Q = 2.8 × (WT/46)0.75, V2 = 51.5 × (WT/46), and CL = 1.1 × (WT/46)0.75, V1 = 4.9 × (WT/46), Q = 1.7 × (WT/46)0.75 and V2 = 6.3 × (WT/46)for R(+), S(−) and racemic ketorolac. Conclusions: Only body weight influenced the PK parameters for R(+) and S(−) ketorolac. Using allometric size scaling significantly affected the clearances (CL, Q) and volumes of distribution (V1, V2).