994 resultados para MOLECULAR DESCRIPTORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of arsenic in the environment is a hazard. The accumulation of arsenate by a range of cations in the formation of minerals provides a mechanism for the remediation of arsenate contamination. The formation of the crandallite group of minerals provides a mechanism for arsenate accumulation. Among the crandallite minerals are philipsbornite, arsenocrandallite and arsenogoyazite. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of philipsbornite to be studied. The Raman spectrum of philipsbornite displays an intense band at around 840 cm−1 attributed to the overlap of the symmetric and antisymmetric stretching modes. Raman bands observed at 325, 336, 347, 357, 376 and 399 cm−1 are assigned to the ν2 (AsO4)3− symmetric bending vibration (E) and to the ν4 bending vibration (F2). The observation of multiple bending modes supports the concept of a reduction in symmetry of the arsenate anion in philipsbornite. Evidence for phosphate in the mineral is provided. By using an empirical formula, hydrogen bond distances for the OH units in philipsbornite of 2.8648 Å, 2.7864 Å, 2.6896 Å cm−1 and 2.6220 were calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed spectroscopic and chemical investigation of matioliite, including infrared and Raman spectroscopy, scanning electron microscopy and electron probe microanalysis has been carried out on homogeneous samples from the Gentil pegmatite, Mendes Pimentel, Minas Gerais, Brazil. The chemical composition is (wt.%): FeO 2.20, CaO 0.05, Na2O 1.28, MnO 0.06, Al2O3 39.82, P2O5 42.7, MgO 4.68, F 0.02 and H2O 9.19; total 100.00. The mineral crystallize in the monoclinic crystal system, C2/c space group, with a = 25.075(1) Å, b = 5.0470(3) Å, c = 13.4370(7) Å, β = 110.97(3)°, V = 1587.9(4) Å3, Z = 4. Raman spectroscopy coupled with infrared spectroscopy supports the concept of phosphate, hydrogen phosphate and dihydrogen phosphate units in the structure of matioliite. Infrared and Raman bands attributed to water and hydroxyl stretching modes are identified. Vibrational spectroscopy adds useful information to the molecular structure of matioliite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral chalcosiderite with formula CuFe6(PO4)4(OH)8⋅4H2O has been studied by Raman spectroscopy and by infrared spectroscopy. A comparison of the chalcosiderite spectra is made with the spectra of turquoise. The spectra of the mineral samples are very similar in the 1200–900 cm−1 region but strong differences are observed in the 900–100 cm−1 region. The effect of substitution of Fe for Al in chalcosiderite shifts the bands to lower wave numbers. Factor group analysis (FGA) implies four OH stretching vibrations for both the water and hydroxyl units. Two bands ascribed to water are observed at 3276 and 3072 cm−1. Three hydroxyl stretching vibrations are observed. Calculations using a Libowitzky type formula show that the hydrogen bond distances of the water molecules are 2.745 and 2.812 Å which are considerably shorter than the values for the hydroxyl units 2.896, 2.917 and 2.978 Å. Two phosphate stretching vibrations at 1042 and 1062 cm−1 in line with the two independent phosphate units in the structure of chalcosiderite. Three bands are observed at 1102, 1159 and 1194 cm−1 assigned to the phosphate antisymmetric stretching vibrations. FGA predicts six bands but only three are observed due to accidental degeneracy. Both the ν2 and ν4 bending regions are complex. Four Raman bands observed at 536, 580, 598 and 636 cm−1 are assigned to the ν4 bending modes. Raman bands at 415, 420, 475 and 484 cm−1are assigned to the phosphate ν2 bending modes. Vibrational spectroscopy enables aspects of the molecular structure of chalcosiderite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different types of defects can be introduced into graphene during material synthesis, and significantly influence the properties of graphene. In this work, we investigated the effects of structural defects, edge functionalisation and reconstruction on the fracture strength and morphology of graphene by molecular dynamics simulations. The minimum energy path analysis was conducted to investigate the formation of Stone-Wales defects. We also employed out-of-plane perturbation and energy minimization principle to study the possi-ble morphology of graphene nanoribbons with edge-termination. Our numerical results show that the fracture strength of graphene is dependent on defects and environmental temperature. However, pre-existing defects may be healed, resulting in strength recovery. Edge functionalization can induce compressive stress and ripples in the edge areas of gra-phene nanoribbons. On the other hand, edge reconstruction contributed to the tensile stress and curved shape in the graphene nanoribbons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the nature of the coupling interactions between copper and uracil as well as its several derivatives has been systematically investigated employing the atoms in molecules (AIM) theory and energy decomposition analyses. The whole interaction process has been investigated through the analyses of the radial distribution functions of the Cu⋯X (X = S and O) contact on the basis of the ab initio molecular dynamics. No direct relationship between the adsorption strengths and inhibition efficiencies of the inhibitors has been observed. Additionally, the possibility of the methyl-substituted dithiouracil species to act as copper corrosion inhibitors has been tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the mineral väyrynenite from the Viitaniemi pegmatite, located in the Eräjärvi area, Finland using a combination of electron microscopy electron microprobe and vibrational spectroscopic techniques. Chemical analysis shows the formula of the mineral to be (Mn0.88,Fe0.08,Mg0.01)∑0.97Be1.02(PO4)1.00(OH)1.02. Vibrational spectroscopy enables an assessment of the molecular structure of väyrynenite to be assessed. An intense Raman band at 1004 cm−1 is to the ν1 symmetric stretching mode. The observation of multiple bands in the phosphate stretching region, offers support for the concept of different phosphate units in the väyrynenite structure. Infrared spectroscopy confirms this multiplicity of vibrational bands. Multiple bands are observed in the phosphate bending region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meyerhofferite is a calcium hydrated borate mineral with ideal formula: CaB3O3(OH)5�H2O and occurs as white complex acicular to crude crystals with length up to �4 cm, in fibrous divergent, radiating aggregates or reticulated and is often found in sedimentary or lake-bed borate deposits. The Raman spectrum of meyerhofferite is dominated by intense sharp band at 880 cm�1 assigned to the symmetric stretching mode of trigonal boron. Broad Raman bands at 1046, 1110, 1135 and 1201 cm�1 are attributed to BOH in-plane bending modes. Raman bands in the 900–1000 cm�1 spectral region are assigned to the antisymmetric stretching of tetrahedral boron. Distinct OH stretching Raman bands are observed at 3400, 3483 and 3608 cm�1. The mineral meyerhofferite has a distinct Raman spectrum which is different from the spectrum of other borate minerals, making Raman spectroscopy a very useful tool for the detection of meyerhofferite in sedimentary and lake bed deposits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the mineral senagalite, a hydrated hydroxy phosphate of aluminium with formula Al2(PO4)(OH)3⋅3H2O using a combination of electron microscopy and vibrational spectroscopy. Senegalite crystal aggregates shows tabular to prismatic habitus and orthorhombic form. The Raman spectrum is dominated by an intense band at 1029 cm−1 assigned to the PO43- ν1 symmetric stretching mode. Intense Raman bands are found at 1071 and 1154 cm−1 with bands of lesser intensity at 1110, 1179 and 1206 cm−1 and are attributed to the PO43- ν3 antisymmetric stretching vibrations. The infrared spectrum shows complexity with a series overlapping bands. A comparison is made with spectra of other aluminium containing phosphate minerals such as augelite and turquoise. Multiple bands are observed for the phosphate bending modes giving support for the reduction of symmetry of the phosphate anion. Vibrational spectroscopy offers a means for the assessment of the structure of senagalite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feral pig, Sus scrofa, is a widespread and abundant invasive species in Australia. Feral pigs pose a significant threat to the environment, agricultural industry, and human health, and in far north Queensland they endanger World Heritage values of the Wet Tropics. Historical records document the first introduction of domestic pigs into Australia via European settlers in 1788 and subsequent introductions from Asia from 1827 onwards. Since this time, domestic pigs have been accidentally and deliberately released into the wild and significant feral pig populations have become established, resulting in the declaration of this species as a class 2 pest in Queensland. The overall objective of this study was to assess the population genetic structure of feral pigs in far north Queensland, in particular to enable delineation of demographically independent management units. The identification of ecologically meaningful management units using molecular techniques can assist in targeting feral pig control to bring about effective long-term management. Molecular genetic analysis was undertaken on 434 feral pigs from 35 localities between Tully and Innisfail. Seven polymorphic and unlinked microsatellite loci were screened and fixation indices (FST and analogues) and Bayesian clustering methods were used to identify population structure and management units in the study area. Sequencing of the hyper-variable mitochondrial control region (D-loop) of 35 feral pigs was also examined to identify pig ancestry. Three management units were identified in the study at a scale of 25 to 35 km. Even with the strong pattern of genetic structure identified in the study area, some evidence of long distance dispersal and/or translocation was found as a small number of individuals exhibited ancestry from a management unit outside of which they were sampled. Overall, gene flow in the study area was found to be influenced by environmental features such as topography and land use, but no distinct or obvious natural or anthropogenic geographic barriers were identified. Furthermore, strong evidence was found for non-random mating between pigs of European and Asian breeds indicating that feral pig ancestry influences their population genetic structure. Phylogenetic analysis revealed two distinct mitochondrial DNA clades, representing Asian domestic pig breeds and European breeds. A significant finding was that pigs of Asian origin living in Innisfail and south Tully were not mating randomly with European breed pigs populating the nearby Mission Beach area. Feral pig control should be implemented in each of the management units identified in this study. The control should be coordinated across properties within each management unit to prevent re-colonisation from adjacent localities. The adjacent rainforest and National Park Estates, as well as the rainforest-crop boundary should be included in a simultaneous control operation for greater success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the initial stage of films assembled by energetic C36 fullerenes on diamond (001)–(2 × 1) surface at low-temperature was investigated by molecular dynamics simulation using the Brenner potential. The incident energy was first uniformly distributed within an energy interval 20–50 eV, which was known to be the optimum energy range for chemisorption of single C36 on diamond (001) surface. More than one hundred C36 cages were impacted one after the other onto the diamond surface by randomly selecting their orientation as well as the impact position relative to the surface. The growth of films was found to be in three-dimensional island mode, where the deposited C36 acted as building blocks. The study of film morphology shows that it retains the structure of a free C36 cage, which is consistent with Low Energy Cluster Beam Deposition (LECBD) experiments. The adlayer is composed of many C36-monomers as well as the covalently bonded C36 dimers and trimers which is quite different from that of C20 fullerene-assembled film, where a big polymerlike chain was observed due to the stronger interaction between C20 cages. In addition, the chemisorption probability of C36 fullerenes is decreased with increasing coverage because the interaction between these clusters is weaker than that between the cluster and the surface. When the incident energy is increased to 40–65 eV, the chemisorption probability is found to increased and more dimers and trimers as well as polymerlike-C36 were observed on the deposited films. Furthermore, C36 film also showed high thermal stability even when the temperature was raised to 1500 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deposition of small metal clusters (Cu, Au and Al) on f.c.c. metals (Cu, Au and Ni) has been studied by molecular dynamics simulation using Finnis–Sinclair (FS) potential. The impact energy varied from 0.01 to 10 eV/atom. First, the deposition of single cluster was simulated. We observed that, even at much lower energy, a small cluster with (Ih) icosahedral symmetry was reconstructed to match the substrate structure (f.c.c.) after deposition. Next, clusters were modeled to drop, one after the other, on the surface. The nanostructure was found by soft landing of Au clusters on Cu with increasing coverage, where interfacial energy dominates. While at relatively higher deposition energy (a few eV), the ordered f.c.c.-like structure was observed in the first adlayer of the film formed by Al clusters depositing on Ni substrate. This characteristic is mainly attributive to the ballistic collision. Our results indicate that the surface morphology synthesized by cluster deposition could be controlled by experimental parameters, which will be helpful for controlled design of nanostructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the formation of heteroepitaxial interfacial layers was investigated by molecular dynamics simulation of soft silver particles landing on the (001) surface of single-crystal copper. In our simulations, the clusters Ag13, Ag55, Ag147 and Ag688 were chosen as projectiles. A small cluster will rearrange into an f.c.c. structure when it is supported on the substrate, due to the large value of its surface/volume ratio. Contact epitaxy appeared in large clusters. The characteristic structure of an epitaxial layer in large silver cluster shows the 〈111〉 direction to be the preferential orientation of heteroepitaxial layers on the surface because of the lattice mismatch between the cluster and the substrate. This was confirmed by studying soft landing events in other systems (Au/Cu and Al/Ni).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colemanite CaB3O4(OH)3 H2O is a secondary borate mineral formed from borax and ulexite in evaporate deposits of alkaline lacustrine sediments. The basic structure of colemanite contains endless chains of interlocking BO2(OH) triangles and BO3(OH) tetrahedrons with the calcium, water and extra hydroxide units interspersed between these chains. The Raman spectra of colemanite is characterized by an intense band at 3605 cm-1 assigned to the stretching vibration of OH units and a series of bands at 3182, 3300, 3389 and 3534 cm-1 assigned to water stretching vibrations. Infrared bands are observed in similar positions. The BO stretching vibrations of the trigonal and tetrahedral boron are characterized by Raman bands at 876, 1065 and 1084 cm-1. The OBO bending mode is defined by the Raman band at 611 cm-1. It is important to characterize the very wide range of borate minerals including colemanite because of the very wide range of applications of boron containing minerals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different types of defects can be introduced into graphene during material synthesis, and significantly influence the properties of graphene. In this work, we investigated the effects of structural defects, edge functionalisation and reconstruction on the fracture strength and morphology of graphene by molecular dynamics simulations. The minimum energy path analysis was conducted to investigate the formation of Stone-Wales defects. We also employed out-of-plane perturbation and energy minimization principle to study the possible morphology of graphene nanoribbons with edge-termination. Our numerical results show that the fracture strength of graphene is dependent on defects and environmental temperature. However, pre-existing defects may be healed, resulting in strength recovery. Edge functionalization can induce compressive stress and ripples in the edge areas of graphene nanoribbons. On the other hand, edge reconstruction contributed to the tensile stress and curved shape in the graphene nanoribbons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of mesoporous molecular sieves, MCM-41, which possesses a regular hexagonal array of uniform pore openings, aroused a worldwide resurgence in this field. This is not only because it has brought about a series of novel mesoporous materials with various compositions which may find applications in catalysis, adsorption, and guest-host chemistry, but also it has opened a new avenue for creating zeotype materials. This paper presents a comprehensive overview of recent advances in the field of MCM-41. Beginning with the chemistry of surfactant/silicate solutions, progresses made in design and synthesis, characterization, and physicochemical property evaluation of MCM-41 are enumerated. Proposed formation mechanisms are presented, discussed, and identified. Potential applications are reviewed and projected. More than 100 references are cited.