527 resultados para MODIS-NDVI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The video FireMovie_2000-2011.avi shows an animation with all MODIS fire product maps of the area sequenced over time. Colors in the video describe MODIS classes as follows: MODIS classification and color scale: Class 0 - not processed - Dark blue (1 frame) Class 3 - water - Light Blue (rivers and some lakes) Class 4 - clouds - Green blue Class 5 - non fire land - Yellow green Class 8 - nominal confidence fire - Red Class 9 - high confidence fire - Dark red

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI. The aim of this study is to establish a comparison between two different sensors in their NDVI values at different spatial resolutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iberian pig valued natural resources of the pasture when fattened in mountain. The variability of acorn production is not contained in any line of Spanish agricultural insurance. However, the production of arable pasture is covered by line insurance number 133 for loss of pasture compensation. This scenario is only contemplated for breeding cows and brave bulls, sheep, goats and horses, although pigs are not included. This insurance is established by monitoring ten-day composites Normalized Difference Vegetation Index (NDVI) measured by satellite over treeless pastures, using MODIS TERRA satellite. The aim of this work is to check if we can use a satellite vegetation index to estimate the production of acorns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La temperatura superficial del mar (SST) estimada a partir de los productos 11 μm diurnos y nocturnos y 4 μm nocturnos del sensor MODIS (Moderate Resolution Imaging Spectroradiometer) a bordo de la plataforma Aqua, han sido comparados con datos medidos in situ a tres profundidades diferentes (15, 50 y 100 cm) en una zona costera del Mediterráneo Occidental. Esta comparación ha permitido analizar la incertidumbre que existe en la estimación de este parámetro en aguas someras y próximas a la costa mediante imágenes de satélite de baja resolución espacial. Los resultados obtenidos demuestran que el producto diurno SST_11 μm, obtiene los estadísticos RMSE (error cuadrático medio) y r2 (coeficiente de correlación de Pearson) más ajustados con valores de 1°C y 0,96, respectivamente, para la profundidad 50 cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying cloud interference in satellite-derived data is a critical step toward developing useful remotely sensed products. Most MODIS land products use a combination of the MODIS (MOD35) cloud mask and the 'internal' cloud mask of the surface reflectance product (MOD09) to mask clouds, but there has been little discussion of how these masks differ globally. We calculated global mean cloud frequency for both products, for 2009, and found that inflated proportions of observations were flagged as cloudy in the Collection 5 MOD35 product. These erroneously categorized areas were spatially and environmentally non-random and usually occurred over high-albedo land-cover types (such as grassland and savanna) in several regions around the world. Additionally, we found that spatial variability in the processing path applied in the Collection 5 MOD35 algorithm affects the likelihood of a cloudy observation by up to 20% in some areas. These factors result in abrupt transitions in recorded cloud frequency across landcover and processing-path boundaries impeding their use for fine-scale spatially contiguous modeling applications. We show that together, these artifacts have resulted in significantly decreased and spatially biased data availability for Collection 5 MOD35-derived composite MODIS land products such as land surface temperature (MOD11) and net primary productivity (MOD17). Finally, we compare our results to mean cloud frequency in the new Collection 6 MOD35 product, and find that landcover artifacts have been reduced but not eliminated. Collection 6 thus increases data availability for some regions and land cover types in MOD35-derived products but practitioners need to consider how the remaining artifacts might affect their analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.